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Fig. 1. Dreaming of Progressive Shell Quasistatics (PSQ): Progressive simulation of sleepy shell characters resting inside a rigid fullerene shape. Both
the rigid colliders (bunny and cage) and the balloon-like characters are modeled using unstructured meshes, which are coarsened, posed by an artist, and
then progressively and safely refined (Left to Right) during PSQ simulation. (Left) Our fast, coarse-mesh PSQ approximation is an excellent predictor across
simulation scales, and faithfully represents the (Middle) intermediate-resolution solution and the (Right, Far-Right) converged fine-scale solution complete
with deformed character details and wrinkles. Despite these benefits, the coarse PSQ proxy is over two orders of magnitude faster to simulate than its detailed

counterpart. Sweet dreams.

Thin shell structures exhibit complex behaviors critical for modeling and de-
sign across wide-ranging applications. Capturing their mechanical response
requires finely detailed, high-resolution meshes. Corresponding simula-
tions for predicting equilibria with these meshes are expensive, whereas
coarse-mesh simulations can be fast but generate unacceptable artifacts
and inaccuracies. The recently proposed progressive simulation framework
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[Zhang et al. 2022] offers a promising avenue to address these limitations
with consistent and progressively improving simulation over a hierarchy of
increasingly higher-resolution models. Unfortunately, it is currently severely
limited in application to meshes and shapes generated via Loop subdivision.

We propose Progressive Shells Quasistatics to extend progressive simula-
tion to the high-fidelity modeling and design of all input shell (and plate)
geometries with unstructured (as well as structured) triangle meshes. To do
so, we construct a fine-to-coarse hierarchy with a novel nonlinear prolonga-
tion operator custom-suited for curved-surface simulation that is rest-shape
preserving, supports complex curved boundaries, and enables the recon-
struction of detailed geometries from coarse-level meshes. Then, to enable
convergent, high-quality solutions with robust contact handling, we pro-
pose a new, safe, and efficient shape-preserving upsampling method that
ensures non-intersection and strain limits during refinement. With these
core contributions, Progressive Shell Quasistatics enables, for the first time,
wide generality for progressive simulation, including support for arbitrary
curved-shell geometries, progressive collision objects, curved boundaries,
and unstructured triangle meshes - all while ensuring that preview and
final solutions remain free of intersections. We demonstrate these features
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across a wide range of stress-tests where progressive simulation captures the
wrinkling, folding, twisting, and buckling behaviors of frictionally contact-
ing thin shells with orders-of-magnitude speed-up in examples over direct
fine-resolution simulation.

CCS Concepts: « Computing methodologies — Physical simula-
tion.
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lution, Model Reduction, Shell Simulation, Contact Mechanics
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1 INTRODUCTION

Thin-shell structures formed from combinations of curved and flat
geometries exhibit complex and often surprising nonlinear behav-
iors critical for modeling and designing materials in diverse ap-
plications ranging from engineering and robotics to fashion and
entertainment. Capturing the mechanical response of these mate-
rials requires well-shaped elements on finely detailed, carefully
constructed, high-resolution meshes. Corresponding simulation
times for computing shell equilibria with these meshes are then
impractical, while fast simulations on coarse proxy meshes generate
significant numerical artifacts with unacceptable inaccuracies.

Zhang et al’s [2022] recently proposed Progressive Cloth Simula-
tion (PCS) method constructs a promising progressive simulation
framework to address these limitations with consistent and pro-
gressively improving simulation over a hierarchy of increasingly
higher-resolution models. Unfortunately, progressive simulation is
currently severely limited in its application by virtue of being re-
stricted to the simulation of just meshes and geometries that can be
generated via Loop subdivision. In turn, this coarse-to-fine strategy
currently prohibits the progressive simulation of high-resolution
models with intricate geometric details, complex boundaries, and/or
high-quality unstructured meshes.

We propose Progressive Shell Quasistatics to extend progressive
simulation to support the high-fidelity modeling and design of all
input shell (as well as plate and cloth) geometries and their corre-
sponding triangle meshes. Progressive Shell Quasistatics provides
fast progressive simulation and final high-resolution, converged
simulation results that respect user-input triangle-mesh topologies
(both unstructured and structured) and their detailed geometries
(see Figure 1).

To enable these features, Progressive Shell Quasistatics addresses
three core challenges. First, the progressive simulation solver must
now be capable of resolving solutions on high-resolution mod-
els with intricate boundaries, geometric details, non-zero curva-
tures, and unstructured triangulations. To do so, we construct a
decimation-based, top-down shell-simulation hierarchy via recur-
sive edge-collapse [Garland and Heckbert 1997]. Second, this fine-
to-coarse hierarchy requires a custom-suited prolongation operator
to map displacements and restrict forces between mesh levels. As
we cover in §4 and §5, prior prolongation methods for fine-to-coarse
hierarchies are unsuitable for shell simulation and instead generate
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Coarse preview simulation

Level 0 Level 1 Level 2 (converged)
Fig. 2. Unimpressed Pumpkin Press: (Top) frames from a coarse-level
PSQ preview simulation of a press crushing a thin-wall aluminum pumpkin.
(Bottom row, left-to-right) at any step of coarse-level preview (here, the last
two frames), PSQ can pause to compute consistent, progressive simulation
results for each level of refinement, up to the final, converged, finest-scale
solutions.

unacceptable artifacts and prohibit convergence. To address this
challenge, we build a new, nonlinear prolongation operator, custom-
suited for curved shell geometry simulation and rest-shape preserva-
tion. Third, to support convergent solutions and robust contact han-
dling, progressive simulation requires a prolonged, interpenetration-
free initializer to bootstrap simulation solves at each new level of
refinement. While the nested hierarchy produced by PCS’s subdi-
vision operator offers simple and direct contact-safe initialization
via in-plane upsampling, there is no corresponding method avail-
able for intersection-free upsampling via vertex expansion. For safe
initialization, we propose an efficient, parallel shape-preserving up-
sampling method that ensures non-intersection (and strain-limiting)
feasibility for each step of prolongation in our fine-to-coarse hierar-
chy.

1.1 Contributions

In summary, Progressive Shell Quasistatics now enables, for the
first time, wide generality for progressive simulation, including sup-
port of curved shells, arbitrary collision object geometries, curved
boundaries (both for thin plate and shell models), and unstructured
triangle meshes—all while ensuring that both preview and final so-
lutions remain free of intersections. Our technical contributions
include
e Enabling progressive simulation on all input high-resolution tri-
angular shell models via the construction of decimation-based,
fine-to-coarse hierarchies;



e A new, nonlinear prolongation operator carefully designed to
address curved shell geometry simulation with rest-shape preser-
vation;

o A safe, shape-preserving upsampling method via successive edge
expansion that ensures non-intersection (and strain-limiting) fea-
sibility for each refinement level in a decimation-constructed
fine-to-coarse hierarchy and

o An efficient parallel algorithm for safe expansion.

In extensive evaluation and comparison, across a wide range
of stress-tests and examples with widely ranging meshes, geome-
tries, and material properties, we demonstrate that Progressive Shell
Quasistatics captures the intricate wrinkling, folding, twisting, and
buckling behaviors of frictionally contacting thin-shell structures
with over orders-of-magnitude speed-up over direct fine-resolution
simulation.

2 RELATED WORK
2.1 Shell Mechanics

The mechanical simulation of thin shells has received enormous
attention in computer graphics and engineering, particularly for
cloth modeling [Baraff and Witkin 1998; Bridson et al. 2002; Grin-
spun et al. 2003; Harmon et al. 2009; Li et al. 2020b; Narain et al.
2012; Terzopoulos et al. 1987; Volino and Thalmann 2000]. Decades
of progress has led to a collection of successful shell simulation
techniques, such as implicit time-integration methods [Baraff and
Witkin 1998; Bridson et al. 2002; Kim 2020; Li et al. 2020b, 2018;
Narain et al. 2012; Otaduy et al. 2009; Tang et al. 2016, 2018], col-
lision processing and strain-limiting methods [Bridson et al. 2002;
Goldenthal et al. 2007; Harmon et al. 2009, 2008; Li et al. 2018, 2021;
Narain et al. 2013, 2012; Vouga et al. 2011], and constitutive model-
ing [Chen et al. 2018b; Clyde et al. 2017; Guo et al. 2018; Jiang et al.
2017; Miguel et al. 2012; Narain et al. 2012; Weischedel 2012]. The de-
mand for faster simulation has resulted in new solver formulations
[Bender et al. 2013; Bouaziz et al. 2014; Daviet 2020; Ly et al. 2020;
Zhang et al. 2019], and high-performance parallel implementations
[Li et al. 2020b; Schmitt et al. 2013; Selle et al. 2008; Tang et al. 2013,
2016, 2018; Wang 2021]. The trade-off between high-fidelity simu-
lation and interactivity is confounding for interactive design and
animation tools [Designer 2022; SideFX 2022]. Progressive cloth sim-
ulation (PCS) [Zhang et al. 2022] can enable the best of both worlds,
with fast interactive design using faithful coarse proxy models and
subsequent refinement at improved speeds to final high-resolution
simulation. However, as covered above, progressive simulation in
its current form has remained highly limited in application when it
comes to modeling structures beyond flat sheets.

The progressive refinement strategy we adopt (and as applied in
PCS [Zhang et al. 2022]) is originally inspired by Sensitive Couture’s
[Umetani et al. 2011] hierarchical and successive improvement algo-
rithm. However, following PCS, we use fine-scale force evaluations,
which encourage consistency across increasing resolution models.
This is key to avoiding the significant artifacts and inconsisten-
cies that are generated by Sensitive Couture[Zhang et al. 2022], and
instead provides faithful coarse-scale previews and consistent refine-
ment across resolutions. Multi-scale hierarchies have also long been
applied for multigrid methods to accelerate linear system solves
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when simulating shell models [Tamstorf et al. 2015; Wang et al.
2018; Xian et al. 2019]. Such multigrid solvers and preconditioners
are complementary to Progressive Shell Quasistaics, and could be
applied to accelerate the solution of linear systems arising within
Newton iterations at each level of the progressive solver.

2.2 Coarse-to-Fine Surface Hierarchies

Subdivision surfaces are a classical multiresolution mesh hierar-
chy for modeling piecewise smooth surfaces using coarse-scale
geometry and edits [Zorin et al. 2000]. Linear subdivision methods
naturally provide linear prolongation operators to map quantities
between levels. The subdivision exterior calculus [De Goes et al.
2016] extends these operators to differential forms. However, these
are inherently limited to meshes defined by coarse input cages, with
correspondingly cage-scale details and boundaries. Nonetheless, pi-
oneering work on multiresolution surface editing of detailed meshes
with subdivision connectivity was introduced by Zorin et al. [1997],
with shape edits achieved using coarse-scale detail modifications.
The starting point for our work, Zhang et al. [2022], utilizes subdi-
vided planar meshes, and works with this category of coarse-to-fine
hierarchies. Application of that work to curved subdivision surfaces
disappointingly limits input and simulation domains to smooth
shapes defined by coarse cages. This simply constrains the hierar-
chy applied in the progressive simulation, to the hierarchy used to
define the geometry domain. Our essential contributions thus refor-
mulate Zhang et al’s [2022] progressive simulation framework to
work in a fine-to-coarse manner, and generalize its success on cloth
and plates with simple boundaries, to arbitrary surface shapes and
unstructured triangle meshes, with possibly complex boundaries,
by decoupling the input shape representation from the progressive
simulation hierarchy.

2.3  Fine-to-Coarse Surface Hierarchies

We build on ideas from Progressive Meshes [Hoppe 1996] and
Kobbelt et al. [1999] for building fine-to-coarse unstructured mesh
hierarchies using recursive edge-collapse operations [Garland and
Heckbert 1997]. Later, multiresolution modeling on arbitrary meshes
was explored by Kobbelt et al. [1998], who used a decimation- and
smoothing-based approach to multiresolution hierarchy construc-
tion and detail estimation, with benefits for smoothing and fairing
applications. Their details were encoded in local frames not based
at a vertex or single face, but on local low-order polynomial inter-
polants or approximants that depend on more than one triangle. In
our approach, we use local per-face frames which are more con-
venient, e.g., for gradient computation, and we avoid smoothing
to produce faithful coarse-scale approximations for simulation and
contact. Normal meshes [Guskov et al. 2000] are multiresolution
meshes where each level can be written as a normal offset from a
coarser version, using just a single float per vertex, which is useful
for compression but not for deformable simulation. Displaced sub-
division surfaces [Lee et al. 2000] allow deformable simulations at
coarser scales to be displaced post-subdivision, e.g., James and Pai
[2003], but fundamentally ignore fine-scale physics.

Multi-scale decompositions — such as the displacement volumes
of Botsch and Kobbelt [2003] — separate coarse surface changes from
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Fig. 3. Progressive Steps in Shell Quasistatic Simulation: (Left-to-right) we demonstrate the alternating steps of PSQ’s computation of a simulation
solution per level, followed by each solution’s prolongation to a safely initialized, upsampled geometry to start the next level’s simulation solve. (Top)
Coarsest-level simulation quickly evolves the solution to an equilibrium predictive of the fine-scale converged solution. (Bottom) Repeated prolongations and
solves per level then rapidly converge to an interpenetration- and artifact-free, finest-level solution demonstrating intricate twisting, folding, and self-contact.

high-frequency details during editing. Special care is paid to ensure
self-intersection-free editing. The propagation of coarse-level edits
to the fine-scale (or equivalently, the re-introduction of fine-scale
details onto a deformed coarse surface) requires a mapping between
the coarse and fine surfaces. Avoiding problems related to normal
offsets [Guskov et al. 2000], Manson and Schaefer [2011] build this
mapping via a best-fit rigid transformation computed during a rever-
sal of edge-collapse operations. They use this mapping to transfer
as-rigid-as-possible deformations from a decimated model to its fine
mesh original. In response to the nonlinearity of this mapping, Liu
and Jacobson [2019] use a best-fit affine transformation for reversing
each edge-collapse, producing a linear prolongation operator. While
these operators can capture some local deformation and recover the
rest shape, as we demonstrate in §5, they are not suitable for the
progressive simulation of bending and buckling shells.

Our hierarchy construction is inspired by the intrinsic prolon-
gation method [Liu et al. 2021], which in turn traces its roots to
MAPS [Lee et al. 1998]. Liu et al. [2021] (and very recently Liu
et al. [2023]) improve on the simple one-ring averaging of Aksoylu
et al. [2005] by tracking a bijective mapping between local patches
during edge-collapses. These local maps can be composed into a
global mapping between entire hierarchy levels. This construction,
however, is only suitable for intrinsic quantities and can not recover
rest shape, while shell modeling must be able to capture extrinsic
bending and rest-shape.

2.4 Coarsening and Homogenization

Our method’s preview-mode simulation of a low-resolution discrete
deformable model that behaves similarly to a higher-resolution
model is related, in goal, to the numerical coarsening of mechanical
systems. Some coarsening strategies consider the homogenization of
spatially varying elastic materials, and seek to estimate general (e.g.,
anisotropic) material parameters for coarsened elements such that
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the coarse-scale elastic response approximates the fine-scale one
without direct evaluation on fine-scale degrees of freedom [Chen
et al. 2018a; Kharevych et al. 2009; Schumacher et al. 2015]. In com-
puter graphics, other works also seek to construct coarsened models
to estimate the behavior of complex embedded geometries [Nesme
et al. 2009].

In this work, we do not seek novel constitutive models for coars-
ened shell elements. Instead, akin to embedding, we rely on prolon-
gation to deform the fine-scale geometry using the coarse proxy.
Here, this enables us to estimate the implied response of the fine
model. During each level’s preview solve our progressive simula-
tion approach can then loosely be viewed [Zhang et al. 2022] as a
form of multi-scale dimensional model reduction (DMR) [Grinspun
et al. 2002; Krysl et al. 2001] for coarsening shell simulation models
while retaining fine-scale awareness of internal elastic energies.
Unlike works that seek to avoid fine-scale force evaluation, with
pre-computed subspace-only force models [An et al. 2008; Barbi¢
and James 2005] or other evaluation speedups [Chaturantabut and
Sorensen 2010], we leverage prolongation to evaluate fine-scale
forces and fast multi-scale restriction to project to the coarser levels,
and, at the same time, target rapid, improved speeds to reach a final
simulation converged on the full degree-of-freedom mesh. As with
classical implicit subspace integration methods for DMR [Krysl et al.
2001] we (parallel) evaluate fine-scale forces, and our speedup, per
level, is primarily due to the smaller systems of equations to solve
during quasistatic time stepping.

In other multi-scale model reduction works, the focus is on spatial
adaptivity, and the projection of fine-scale forces is avoided using
adaptive quadrature schemes [Grinspun et al. 2002]. Here we focus
on quickly computing high-quality coarse previews before gaining
further speed-up by progressively and rapidly refining to the finest-
level solution.
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PSQ simulation

PSQ Initialization

Fig. 4. Coarse shell models that can! (Left, red) Direct coarse-level simulation of a crushed, thin-wall aluminum cylinder exhibits severe locking artifacts. In
contrast, (right, blue) our coarse-level PSQ simulation, using the same base mesh, generates a predictive solution at a comparable speed, that is consistent

with (farther right) its mid-level prediction and its finest-level, converged result.

3 BACKGROUND: PROGRESSIVE SIMULATION

Zhang et al. [2022] introduce the progressive simulation framework
for the fast preview and efficient solution of high-quality shell qua-
sistatics simulations on triangle-meshed geometries. Progressive
simulation generates consistent and improving solution previews
via a hierarchy of increasingly higher-resolution meshes, with con-
verged simulation output generated on a final, high-resolution mesh.

This hierarchy is constructed from a set of triangle meshes and a
corresponding set of prolongation operators each mapping to the
next finer-resolution mesh. Meshes in the hierarchy are indexed in
increasing resolution by subscript € [0, L], where x; and ¥; € R3™
are, respectively, the n; deformed and rest positions of mesh nodes
at level I. Deformed positions of the coarsest mesh are then stored
in x9, while x; gives the finest-resolution positions of the final,
converged, high-quality simulation output. In turn, each level [
is associated with a prolongation operator, Pll+1, mapping nodal
positions from the current level to the next level I + 1. To simplify
the discussion, where clear we will designate finest-level resolution
quantities without decoration, so that, e.g., x = xp, X = X1, and
n=mnjy.

We equip each simulation mesh! with shell (¥), contact barrier (B),
friction (D), and, when required, strain-limiting potential energies
(S) to compute the stable equilibria of frictionally contacting shells
subject to imposed boundary conditions and external forces. These
are the local (constrained) minimizers of the total potential energy,
E;j(x) = E;(x, X, u) constructed from the sum of the above potentials,
E; = ¥;+Bj+Dj+S;, where u collects current material and boundary-
condition parameters.

Given a starting nonequilibrium configuration, x’, and current
parameters, u, progressive simulation computes stable equilibria
by time-stepping its gradient flow with implicit Euler. At the finest
level, this amounts to computing a sequence of forward quasistatic
positional updates via artificial “time steps” (of size h) from ¢ to t + 1

'We apply Neo-Hookean membrane [Chen et al. 2018b] and discrete hinge bending
[Grinspun et al. 2003; Tamstorf and Grinspun 2013] for shell elastics, and C-IPC [Li
et al. 2021] barriers for contact, friction and strain limiting.

via the minimization of an updated incremental potential,

x'*! = argmin 1 llx = x* |2, + E(x, %, u'™1), (1)
x  2h? M
with mass matrix M, until convergence to equilibrium, given by
[|[VE(x™)|| < e, is satisfied.
To avoid expensive direct simulation on the target fine-resolution
mesh, progressive simulation applies its hierarchy in a one-way,
nonlinear multiresolution simulation-solver [Zhang et al. 2022] with

two solution phases:

Preview, xlt - xl”l: quasistatic advancement of the solution, at

level I, from time step ¢ to t + 1, over possibly varying u to

provides consistent solution previews at each level; and
Refinement, xlprl — xlt:}: progressive spatial improvement of the

solution from level [ to [ + 1, for a fixed set of conditions u?.

3.1 Coarse-Level Proxy Energies

At each coarsened-level | < L, previews (over varying parameters
u) and progressively refined solutions are made consistent by solv-
ing each time step’s quasistatics with a proxy for the finest-level
potential energy,

F(xp) = By (x7) + Dy (xp) + S;(xp) +% (P (x7)). (2

Ci(x1)
Here shell elastics, ¥}, are evaluated at the finest-resolution model,
via a direct prolongation, p! (x7), from level [ up to the finest scale,
while coarse, barrier-based potential terms in C;(x;) enforce contact
and strain-limit feasibility on the current level-I’s geometry. Each
coarse level is then solved by stepping via

1

1 . 2

xlt"' = argmin — [ — xlt”Ml + F(x). 3)
x 2h

3.2 Refinement and Safe Initialization

When our preview of the solution at level I < L is finalized, refine-
ment to the next level, [ + 1 then requires prolonging the current
solution to this finer-resolution mesh, xlt+1 = Pll+1 (xl*), after which
we proceed by quasistatic stepping with solves of (3). However,

while this prolonged geometry provides a natural starting point
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L—2
PL*]
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Fig. 5. Fine-to-coarse construction of shell prolongation operators: In
contrast to PCS, which relies on a coarse-to-fine Loop subdivision process to
construct a smooth mesh hierarchy, PSQ applies a fine-to-coarse hierarchy
construction to support detailed irregular input meshes. We construct a non-
linear prolongation operator P custom-designed for shell simulation during
the forward mesh decimation process between each level. By repeatedly
applying these prolongation operators, we can refine coarse shell geometry
and deformations from the coarsest level-0 mesh, My, through a sequence
of meshes, M;, until reaching the finest level-L geometry, M.

for the next level’s solve, prolongation is oblivious to contact con-
straints and strain limits, and so can and will violate feasibility with
both intersections and excessive stretching. As a final computation
then, to start our progressive simulation solve at each new level,
we must find a safe (intersection-free and strain-limit satisfying)
initializer close to xlt+1 in order to begin the new level’s preview
stepping with (3).

3.3 Progressive Cloth Simulation

Zhang et al’s [2022] Progressive Cloth Simulation (PCS) constructs
its hierarchy coarse-to-fine, starting with an input, coarse mesh
triangulation, via a boundary-fixed Loop-subdivision [Loop 1987].
This forms a nested hierarchy of triangle meshes, with a linear,
P!l eR3u+X3m prolongation operator per level naturally defined
by each level I’s corresponding Loop subdivision operator. In turn
direct prolongation from any level [ to the finest scale is simply the
repeated prolongation, P! (x) = Pf'l e Pll+1x1.
For safe initialization PCS’s nested hierarchy
also provides a safe and simple, intersection-
free initializer, x5, via Barycentric upsam- 7 {
pling followed by linear search along d =
Pll+1 (x;) — x;,, to find a close-by feasible # (
point to the prolongation. With an intersection-
free point, any remaining strain-limit viola-
tions are then progressively removed by a
stretch-reducing optimization drawing princi-
pal stretches below their limits.

July 0} asIe0)

4 PROGRESSIVE SIMULATION FOR SHELLS

Our goal is a progressive simulation suitable for both unstructured
and structured triangle mesh simulation domains. In turn, this re-
quires a corresponding prolongation operator and safe initialization,
which a) captures both intrinsic (in-plane) and extrinsic (bending)
deformation consistent with the shell models we simulate and b)
preserves rest shapes at all levels in our hierarchy.
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Fig. 6. Shell Prolongation: We can prolong coarse mesh vertices on our
fine-to-coarse hierarchy with intrinsic parameterization. However, intrinsic
parameterization does not recover the original rest shapes of the hierarchy -
a requirement for progressive simulation. We extend intrinsic prolongation
to capture missing extrinsic information with offset displacements defined
per-shell element that correctly preserve detailed-geometry rest shapes,
and help capture both intrinsic (stretch) and extrinsic (bend) deformations
for shell simulation.

4.1 Simulation Hierarchy from Decimation

We begin hierarchy construction with an input, fine-resolution tri-
angle mesh M. This is the finest-level mesh we target for our
progressive simulation’s final, converged physical solution. We then
build our simulation hierarchy by applying a series of edge-collapse
decimations with subsequent levels’ meshes, My _1 - - - My, each de-
fined after intervals of decimation. For decimation, we apply quadric
error edge collapse [Garland and Heckbert 1997] with probabilistic
quadrics for high-quality decimation [Trettner and Kobbelt 2020].
We then apply each level I’s initial decimation vertex positions to
define that level’s rest geometry, %;.

4.2 Prolonging Decimated Hierarchies

As reviewed and analyzed further in Section 5, recent methods offer
initially promising opportunities for prolonging our edge-collapsed
hierarchies with linear operators. While neither, unfortunately, are
suitable for progressive shell simulation, they provide a good start-
ing point to analyze necessary properties for shell prolongation,
and to construct our prolongation operator.

Intrinsic prolongation [Liu et al. 2021], provides a sparse linear
operator via repeated local self-parameterization. However, it does
not preserve rest shapes in the hierarchy, generating significant
stretch-response errors in all configurations, including ghost forces
when the surface is undeformed. At the same time, it misses the
critical bending responses of rest-shape curved surfaces. See Figure 6
and §5.
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Fig. 7. Mapping Shells: In the forward decimation process, a bijective map
is established between a detailed input shape and its simplified, coarsened
version. This mapping allows us to select a specific location on the intricate
mesh and directly find its corresponding position on the coarsened mesh
and vice versa. We use the visualization method of [Liu et al. 2023] to show
the color-coded, simplified mesh overlay onto the high-resolution model.

On the other hand, affine prolongation [Liu and Jacobson 2019],
via repeated best-fit affine transforms per edge-expansion neigh-
borhood, nicely recovers the hierarchy’s rest-shapes. However, this
affine fitting incorrectly provides a volumetric approximation for a
shell deformation (effectively approximating deformation per neigh-
borhood with a linear tetrahedral element). In shell simulation, this
generates poor force approximations during restriction, leading to
jittering and stagnating convergence (see Figure 15). At the same
time, this volumetric approximation is also often rank-deficient in
many regions, leading to significant and unacceptable geometric
artifacts in upsampling (see Figure 13). Finally, while similarly to
intrinsic prolongation, affine prolongation also provides a linear
operator, its lack of sparsity makes it impractical for high-resolution
mesh simulation.

4.3  Shell Prolongation for Progressive Simulation
Target properties for our prolongation operator are then

(1) Rest shape recovery: Prolongation should preserve rest shapes
at all levels of refinement in our hierarchys;

(2) Shell-model consistency: Prolongation should upsample both
intrinsic (stretch) and extrinsic (bending) deformation modes
of the codimensional shell geometries; and

(3) Efficiency: Progressive simulation applies repeated prolonga-
tion calls inside every force and refinement evaluation—it
must be inexpensive to work within both operations.

We begin our construction by considering the simplest case of a
hierarchy formed by a single-edge collapse (see Figure 8). The rest-
shape prolongation that reverses this collapse is simply “edge expan-
sion” We start with Intrinsic Prolongation’s self-parameterization
[Liu et al. 2021] to define the intrinsic (uv) coordinates that will
anchor the locations of the two newly split vertices (for the next
{+1’ .

We then store, one-time, the rest-shape extrinsic difference, d* =
i , per new-level vertex i, with respect to the coarse level-I’s

[+1 level mesh), 6§+1 and 0 in the current mesh [.

x —al
I+1 “l+1 ’
rest-shape triangle containing 5ll+1 (Figure 8). With ordered vertex
rest-positions, Xy, X1, X2, for the containing triangle, we decompose
the extrinsic difference into an out-of-plane offset y' = a’d’ € R
along the triangle’s normal, 7, and the remaining, in-plane contribu-
tion ¢! €R?, so that d’ = iy’ + (&, ix &)t}, with & = ¥1 — %o /|| %1 — %o|-
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Fig. 8. Edge-expansion quantities: In the forward decimation process, we
record the intrinsic coordinates of expanding edge vertices, i and j, in their
local joint flattening. In turn, the offsets from these intrinsic coordinates to
their rest vertex position are then also stored as corrective displacements in
the triangle’s local system.

During simulation, shell defor-  z44 Rest
mation drives the corresponding
deformation of these stored in-
plane and normal components.

Y

Same jintrinsic

Our prolongation begins with the \ cgordinate
simple (and linear) intrinsic pro- ROt_at'On

. . . fitting :
longation to determine the in-

i 2
plane deformation of our anchor-

ing point locations, v;+1. Bending
of our shell’s hinge elements then
determines each containing tri-
angle’s new normal direction, n!(x;), for application of our out-of-
plane contribution, y*. Finally, and correspondingly, the rotational
factor?, RI(F?) € R3%2, of each containing triangle’s deformation
gradient, F i gives the rotation for our remaining, in-plane offset, £,
See the inset for an illustration of this process.

Put together, prolongation during deformation for a single, edge-
expanded vertex is then,

» Deformed

xll+1 = v;+1 +a'(x1), )
where the nonlinear offset is
a'(x;) = n' (x)y' + R (x)t', ®)
and (y%, t') € R? are precomputed once.

Moving to our general case of prolongation with our hierarchies
defined by many (often nested) edge-collapses then follows easily.
Applying intrinsic prolongation to all our expanded nodes simul-
taneously to compute their intrinsic “anchor” locations remains a

linear operation, v, = Ull+1xl- We then can similarly apply our
nonlinear offset computation globally for all m; expanded nodes as

al, (x) = [a' ()T, a™ ()T, (6)

so that our per-level shell-prolongation operator is

! 1 1
XI+1 = P]+1 (x) = U1+1xl +ap (7). (7)

2With deformed positions xy, x1, x2 and undeformed reference edges &; = x; — X,
&, = X — X9, the membrane deformation gradient per containing triangle is F(x) =

_ _ R—1 3%2 R _ (lledll  (eq-ez)/lleqll P
(31 — x0, x2 — x9)B™! € R, where B = ( o ey x enll/lleyl . Its rotation is then

T
R(F(x;)) = U(é 0 g) VT € R3¥2 with the SVD F(x;) = UZVT.
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Fig. 9. Safe Single Edge Expansion with Contact: (Left) For a single
edge expansion, we perform topology change, then (Middle) we carefully
perform a safe collision-free initialization of edge positions via a robust
randomized stratified sampling algorithm; and, once safely initialized, we
(Right) apply our CCD-filtered geometric expansion until the full edge
expansion is finalized.

4.3.1 Direct Prolongation. Along with our above, per-level prolon-
gations, P +1( ), our mapping allows us to build direct prolongations
for non-adjacent levels of our hierarchy. Specifically, to compose
prolongations, P!(-), that directly map from a level [ < L to our
finest mesh, we apply the same above construction by precomputing
and storing the extrinsic differences between the finest rest-mesh
and its intrinsic prolongation from level I’s rest mesh. We form the
intrinsic prolongation from level / to L by repeated composition
Ul UL 1, Ull+1
(yi,t ), via the difference between the resulting intrinsic prolonga-

and precompute our per-vertex displacements,

tion & = Ulx; and the finest-level rest geometry, . Once stored, at
deformation all m edge-expanded vertices from level [ to L are again
prolonged via (4) so that

d(xp) = [a' )T a™ )T, ®)
and our direct prolongation operators is
x =P (x)) = Ulx; + d (x)). (9)

Note that for deformations away from rest, our direct prolongation is
not equivalent to repeated application of our per-level prolongation,
pl+ Pf‘l o-- 'OPll+1' While both operations preserve the finest-level
rest shape, they obtain different (albeit similar) prolongations of the
finest-resolution geometry under deformation. Direct prolongation,
however, avoids the dense stencils and additional nonlinearity that
repeated composition of single-level operators would introduce,
improving efficiency in optimizing each level’s progressive solution.

4.4 Safe Initialization for Refinement

As discussed in §3, the Progressive Simulation framework requires
warm-starting our IPC-barrier-based solves (see §4.5 below for de-
tails) of each finer-level [ + 1’s minimization of (2) with a feasible
(interpenetration-free and, when required, strain-limit satisfying)
initialization close to the prolongation of the just-completed prior-
level’s solution, Pll+1(xlt+l). This enables safe, progressive refine-
ment of our equilibrium solution all the way from a feasible input
geometry until final convergence at our finest-level mesh.

PCS [Zhang et al. 2022] builds a nested hierarchy via Loop sub-
division and so can directly compute a contact-safe initialization
to each finer-level’s geometry by simply applying in-plane upsam-
pling, followed by CCD-filtered advancement towards Pl (xt“)
However, to support arbitrarily structured mesh connecthltles and
(non-nested) decimation-built hierarchies, this simple strategy is
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Fig. 10. Safe Sampling: Demonstration of the high likelihood of finding
a safe perturbation direction for intersection-free initialization. Here, we
consider an example input geometry in the top left, produced after PSQ’s
topology update step (see Figure 9), while the bottom left shows its corre-
sponding target prolonged geometry with self-intersections. Each sampled
point on the sphere (we use 10,000 random samples) represents a pertur-
bation direction, with color indicating the maximum allowable step size
(in log scale) along that direction with no self-intersection. Blue regions
then denote safe perturbation regions, while the green plane aligns, for
visualization, the directions aligning with the surface of the green triangle
in the starting geometry.

no longer applicable. We next address this challenge of computing
feasible initializations for progressive simulation on arbitrary shell
geometries and unstructured meshes (see Algorithm 2 in Appendix B
for pseudocode. ).

4.4.1 A safe initial expansion. As in our prolongation, our process
for safe initialization in refinement applies edge expansion. Our first
step is to build a safe and so intersection-free, edge-expanded non-
1 Withlevel [+1°s topology, from which

we can robustly search along the difference d = l+1 (x”l) x5
to find a near-to-prolonged feasible point (see Figure 9).

We begin by examining a single edge-expansion patch in the re-
fining mesh going from level [ to [ + 1. An initial, purely topological
expansion (no positional change) of an expanded vertex k, to ver-
tices i and j, at vertex k’s’ location, generates an intersection-free
geometry from level I’s solution except for the coincident vertices.

degenerate starting mesh, x5

I+1

To apply a search for an Perturb Fix
intersection-free geometry from . .
® & o o [ ]

starting vertex positions of i and e
J, towards their target prolonged

positions, we must first safely jHesi j0=0i i0 @]
separate them by a small pertur- ¢, Intersect  Reverse

bation to enable robust distance

calculations in the following CCD computations. In 2D, identifying
a safe perturbation direction is simple: we can perturb towards the
target prolonged positions of i and j, and in the reverse direction
(see inset). However, without guidance, in 3D, even the smallest
perturbation can easily generate severe local self-intersection in the
patch (see Figure 10 Left) and even global intersections with other
patches in the domain.

To find an initial safe perturbation per expansion, we propose a
randomized stratified sampling algorithm as an ordered process to
compute safe initializations for expansions. We start with a “first-
attempt” perturbation that moves the edge-expanded vertices i and
Jj towards their targets with small magnitudes guaranteed to avoid
intersections outside the expansion patch. We then check perturba-
tions for local self-intersection within the patch. If intersection-free,



we are done and can proceed to our CCD-filtered geometric expan-
sion (see below). In the minority of cases, where self-intersection
in the expansion patch is generated from this first perturbation, we
next randomly sample perturbation directions (applying the same
safe-magnitude bound to avoid global intersections) for vertex j
and repeat our check until a safe initialization is obtained. While it
is not possible to guarantee a safe perturbation exists for arbitrary
geometric input (see our synthetic counter-example in Figure 20),
empirically, we quickly obtain safe initialization from randomized
sampling for all expansion examples across all our stress-test simu-
lations. In Figure 10, we demonstrate the high likelihood of finding
these safe perturbation directions for intersection-free initialization
via random sampling. See Algorithm 5 in Appendix B for pseu-
docode.

4.4.2 CCD-filtered geometric expansion. Now that we have a method
to perturb each edge expansion safely, we next detail our sequen-
tial process for safely expanding these perturbed edges towards
their prolonged geometry targets via safe-stepping with CCD. Then,
in the next section, we explain the final parallel safe-expansion
algorithm this enables.

For CCD computation, we require finite edge lengths for robust
distance evaluation; our above perturbation provides this. However,
CCD efficiency (and speed of following time-step solves) drops as
distances between mesh primitives become unnecessarily small.
Our goal then becomes aggressively stepping expanded vertices
towards their targets while ensuring applied displacements maintain
a small, safe-distance gap between surface primitives throughout
all expansions.

Before edge expansions are applied for re-
finement, the previous level’s Newton-based
IPC solution, xlt“, ensures an easily evaluated
minimal-gap distance is preserved between all
surface primitives. We compute this gap, g, at
the start of each refinement operation. The
magnitude of this value remains large enough
for efficient distance evaluations (here within the range of 107% to
10~3m) by keeping the IPC contact barrier stiffness, k, matched to
each shell system’s maximum bulk modulus [Li et al. 2021].

We then first displace each newly inserted vertex along the safe
perturbation direction (determined by our above-described sam-
pling method) by a distance that is an order of magnitude smaller
than g. This ensures global non-intersection safety without requir-
ing expensive, explicit global intersection checks and processing.
Next, we apply conservative CCD-filtered steps to expand each new
edge’s vertices towards their targets geometrically. We apply Li et
al’s additive-CCD (ACCD) [Li et al. 2021] for all CCD evaluations.
ACCD provides a conservative ratio bound, r € (0, 1), as an input
parameter to each CCD evaluation between mesh-primitive pairs
(point-triangle and edge-edge). Each such ACCD evaluation then
returns a maximal step size that, when taken along the queried
displacement direction, guarantees that the ratio between the new
distance between the primitive pairs, dy, and the initial distance, do,
will be greater than r, so that dy > rdp.

After culling far-away candidate pairs with standard collision-
detection acceleration (spatial hash and broad-phase CCD), we first
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Level 0 Level 1 Level 2 (converged)
Fig. 11. Crushing Results: Mesh hierarchies generated by (prior work
method) PCS on unstructured mesh input construct triangle meshes that are
ill-suited for many shell simulations. Here, when we simulate the crushing of
a thin-wall aluminum can, this causes PCS (Top Row) to introduce significant
errors and locking artifacts. These artifacts are especially highlighted when
compared to PSQ’s results (Bottom row) for the same simulation, where
both methods’ hierarchies use the same base, level-0 unstructured mesh,
and then refine with comparable DOF and triangle counts at each level.

visit all remaining collision-candidate pairs (before ACCD) to choose,
per query, a suitable ratio bound, r, that seeks to balance produc-
tively large step sizes for progress, against overly large steps, that
would potentially bring mesh primitives too close together. When
the initial distance for a pair is well below the gap, dy < g, we set
r = 0.999 to minimize further decrease while not entirely preventing
exploration via CCD of inward displacement for this pair altogether.
On the other hand, when a pair’s initial distance is of the same order
or larger than the gap (i.e., dy = g or dy > g), we balance progress
with conservative exploration and set r = 0.1. See Algorithm 4 in
Appendix B for pseudocode.

4.4.3 Expansion-patch relaxation. We emphasize that the above-
described ratio bounds for ACCD are heuristic choices that we
find exceedingly effective for efficient gap maintenance in most
of our refinement steps. However, the safe initialization process
does not rely on these ratio choices. Instead, after applying the
ACCD-determined maximal-step-size displacement, we check our
final resulting distance per pair, d;. If we find a too-small distance,
di < g, and/or triangle-element degeneracy (recalling that the CCD
step is physics oblivious), we then locally relax the expansion patch
with repeated Newton iterations of the incremental potential solve
(3), with an increasing schedule of barrier stiffness, until the balance
between elastic and IPC barrier forces restores the gap between the
too-close collision pairs, and expands the ill-shaped elements. These
per-patch relaxation solves are a small and local overhead that rarely
exists in most steps due to our ACCD bound-ratio setting.

4.4.4  Safe parallel expansion. In the above section, for clarity, we
introduce our safe edge-expansion process sequentially, visiting one
edge expansion at a time. With the current local process detailed,
we now describe here the fast, parallel variant that we apply for
efficient, safe initialization for each refinement operation in our
progressive simulation.
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Fig. 12. Lots of Twisting: (Bottom row) progressive-simulation of a tightly
twisting cloth with (prior work) PCS’s Loop-subdivision-based method
yields a coarse-level simulation with overly creasing spiral artifacts; whereas
our PSQ solution remains artifact-free during coarse-level preview (top
left), with tight conforming twists that are consistent with it’s finest level,
converged solution (top right).

For parallelization, a first naive strategy could be to insert and
visit all edge expansions carrying us from mesh M; to mesh M;,,
simultaneously. Unfortunately, this strategy already encounters a
problem during the initial edge perturbation: parallel nested edge-
expansions compromise the evaluated safe-gap bound and would,
in turn, then require the solution of a challenging, global detangling
problem with expensive global intersection queries and sampling.

Instead, we decompose the expansion process from M; to M.,
in parallelized batches via coloring. To start with, we require that
vertices within each color can not be expanded simultaneously
with a combinatorial neighbor. This defines independence for our
coloring and ensures that no nested expansions are treated per
batch. To build our graph coloring, we follow the dependency graph
established by our original decimation to apply greedy coloring
while maintaining the dynamically expanding mesh. This ensures
that the order of any two dependent edge expansion operations
cannot be reversed. As our graph coloring is then based solely on
mesh topology we build it one-time as a precomputation, right after
decimation, and then reuse it throughout our progressive simulation
pipeline (see Figure 3 in the supplemental for visualization and
Algorithms 6 and 7 in Appendix B for pseudocode. )

Applying our graph coloring, we process the safe edge expan-
sions in parallel per batch. Within each batch, we start by parallel
applying our above-described sampling-based safe perturbations.
Next, for the same batch, we apply a global, additive advancement
with our ACCD step that allows us to safely evaluate our CCD
queries in parallel while still ensuring progress is not stalled early.
After perturbation, each expanding vertex, x;, in the batch has a
corresponding remaining displacement to its target, §;. As above in
§4.4.2 we visit, after collision culling, each remaining candidate pair
to set their ACCD ratio bounds. Then, applying ACCD in parallel
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to all candidate pairs returns a maximal safe step size per pair. Safe
progress then requires all vertices to advance via the smallest among
these returned step sizes, a. If we stop here, as in the standard IPC
line-search process, this unduly halts progress for all remaining
vertices not in the stencils of the surface pairs that generated a.
Instead, we additively repeat this process so that all vertices are
productively stepped along their individual displacements.

To do so, inside each loop, we first query the collision-culled
set for a new upper-bound allowed step size, a. We next safely
advance all vertices i in the batch by x; « x; + ad;. We then “stop”
the advance of all vertices j that participate in a candidate-pair
stencil, which generates the upper-bound step size . We do this by
canceling their remaining displacement, §; « 0. Finally, we update
the displacement of all remaining vertices k in the batch to account
for the applied advancement, §; < (1 — a)dj. We repeat this loop
until the parallel ACCD query returns ¢ = 1, indicating that no
further progress toward the prolonged target is possible along the
initial direction. Here, throughout this process, collision detection
remains inexpensive as the broad-phase acceleration structure and
its culling can be applied once at the start of the loop, which remains
valid as all our queries are applied repeatedly on subsets of the same
initial displacements.

Finally, as described above in §4.4.3, if any primitive pairs end
this process with a distance less than our safe gap, g, we apply our
patch-based relaxation, now solving over local patches in the current
color’s domain until the elastic and IPC barrier forces restore the
gap and correct ill-shaped elements. See Algorithm 3 in Appendix B
for pseudocode.

4.4.5 Strain Limiting Feasibility. Our safe parallel edge-expansion
gives us an interpenetration-free target mesh, at the new level  + 1’s
resolution, near to our prolonged target, Pll+1 (lel). However, the
newly defined mesh can still violate the membrane deformation lim-
its imposed for strain-limited shell materials. To apply a strain-limit
correction, we then observe that we satisfy all necessary conditions
to apply the PCS method’s variational strain-limit correction solve
[Zhang et al. 2022]. To do so, in direct analogy to PCS’s treatment of
even/odd vertices in its Loop subdivision, we simply fix pre-existing
vertices from our prior coarse level mesh, M;, and iteratively opti-
mize our newly inserted vertices from M), ; to enforce strain limits
at the new level. Our strain-limit correction then remains otherwise
unchanged from PCS [Zhang et al. 2022].

4.5 Quasistatic Stepping

Once we have computed the safe initializer to start the next level’s
refinement, we begin solving the new level’s preview. We repeatedly
solve (3) with Newton-type iterations to step our preview solutions.
To do so, we begin with Zhang et al’s [2022] inexact Newton strat-
egy — using the projected Hessian of each coarse-level’s incremental
potential, H(x;) = #Ml + ProjectPSD(V2E(x;)), for precondition-
ing. Then, in each Newton-type iteration, with the current estimated
solution, x;, we further approximate the gradient by fixing the pro-
longation’s current offset to the currently computed displacement,
d; = d!(xj). Each iteration’s search direction, p, is then obtained by



solving the linear system
1
Hx) p==(M+ UHTVE(U'x +dp) +VC(x)).  (10)

For progressive simulation, each individual quasistatic step need not
be solved accurately. Instead, we apply a small maximum number of
solution-improving iterations per proxy step and quickly progress
the preview solution with both rapid convergence to equilibria and
stable, easily interruptible, intermediate previews during refinement.
For all preview levels | < L, we stop quasistatic stepping when the
current change in solution drops below user-specified tolerance,
|lap|| < € where « is the returned step size from line search. After
the last refinement is completed, our stepper directly solves the full
system’s incremental potential (1) again via quasistatic stepping for
the finest level to convergence. See Algorithm 1 in Appendix B for
pseudocode.

4.6 Progressive Collision Objects

Along with enabling the simulation of shell elastics, the combined
application of our prolongation and safe initialization now also
enables direct integration of arbitrary collision-object geometries
(both scripted and fixed) into the progressive simulation pipeline.
Progressive collision objects can now simply be included without
requiring special-case treatment or mesh restrictions at input along
with all other triangle mesh domains. They are initialized and pre-
processed in the hierarchy, prolongation, and coloring construction
identically to all the other input meshed domains. Then, at each
level of simulation, we simply record the per-step target positions
for each collision-object node. During that level’s quasi-static simu-
lation, vertices in the collision-object domains are equipped with
IPC’s augmented-Lagrangian energy [Li et al. 2020a], driven to their
targets during each solve iteration. Collision objects are then treated
identically to the physical shell domain for all other steps of the
progressives-simulation pipeline.

5 EVALUATION

We implement our methods in C++, applying PARDISO [Bollhofer
et al. 2020], compiled with Intel MKL LAPACK and BLAS for linear
solves and Eigen for remaining linear algebra routines [Guennebaud
etal. 2010]. As covered above for robust conservative continuous col-
lision detection we evaluate queries with spatial-hash culled ACCD
[Lietal. 2021]. We summarize example statistics in the supplemental
and report timings with a M1 Max (32 GB) MacBook.

5.1 Comparisons

PCS’s Loop Subdivision Prolongation. While our primary focus
is on enabling the progressive simulation of curved shell surfaces
with unstructured meshes, our PSQ simulation works equally well
with flat rest-shape geometries. In such cases, our nonlinear pro-
longation operator simplifies to linear barycentric interpolation. In
draping simulations with flat cloth sheets, our coarse-mesh pre-
viewing model then aims to approximate fine-mesh curvatures with
fewer triangles. In Figure 2 in the supplemental we see a signifi-
cant difference even in a simplest case of flat-sheet draping. Here,
while both the PCS and PSQ preview solutions well-capture their
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Fig. 13. The Bumps: Affine prolongation is often rank-deficient in many
regions, leading to significant and unacceptable geometric artifacts in up-
sampling like the bumps we see here (Left). In contrast PSQ’s prolongation
(Right) recovers smooth, artifact-free prolongations that offer the next stage
of optimization a smooth ride towards convergence.

final respective fold arrangements, PCS’s Loop subdivision prolon-
gation significantly over-estimates the overall material stiffness
resulting in a cloth silhouette that “droops” much more in its final
highest-resolution, converged solution, whereas the PSQ solution
significantly improves in capturing the material’s bulk stiffness in
its preview.

More generally, mesh hierarchies that are generated by PCS via
its repeated Loop subdivision on unstructured mesh input, generate
poor triangle meshes for both cloth and shell simulation that can
introduce significant artifacts when compared to our PSQ method’s
hierarchy. In Figures 12 and 11 we set up two very different stress-
tests comparing the results of PCS and PSQ. In these simulations,
both of the two methods’ hierarchies use the same base, level-0, un-
structured mesh, and then refine with comparable DOF and triangle
counts at each level. In Figure 12 we twist a one meter square cloth,
incrementally rotating its ends for 15s (h = 0.1s). As the simulation
progresses we see that the PCS coarse-level preview-simulations
yield tight, overwound and creased spirals (creasing artifacts) signif-
icantly different than the final-level solution, while the PSQ solution
remains consistent and artifact free during coarse-level preview,
despite the tight conforming twists, all the way out to it’s finest
level result (see Figure 3). Next in Figure 11 we switch to a thin-wall
(0.01mm) 10cm tall aluminum cylinder that we incrementally crush.
Here we see that the resulting PCS solutions suffer from significant
artificial locking resulting in poor and jagged solutions at both lev-
els’ of its preview hierarchy, as well as in its final converged solution.
Again, in contrast, we see that despite the exceedingly thin and stiff
material, our PSQ previews capture the complex initial buckling
behavior, even on our coarsest mesh, with consistent and refined
results up to the converged solution (Figure 4). Likewise in Figure 4
we also see that a direct coarse-level simulation suffers even-more
significantly from comparable membrane-locking issues — please
again contrast with the coarse-level PSQ solution. Here these results
emphasize how PSQ significantly improves shell modeling in both
coarse-level simulation and final-level results by 1) enabling the use
of user-provided high-quality, finest-level meshes (not possible for
PCS) for force and energy evaluations; and 2) replacing PCS’s sub-
optimal choice of the Loop-subdivision operator for prolongation
with PSQ’s shell-model-customized prolongation.

Intrinsic Prolongation. As covered in §4, intrinsic prolongation
provides a linear, sparse option for prolongation by tracking a bi-
jective mapping between local patches during edge applications.
This works well when the aim is to map surface signals between
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Fig. 14. Affine Jitters: We compare the stretch forces generated by affine
prolongation to those generated by our prolongation operator. In simula-
tion, affine prolongation generates large jittering artifacts which stymie
convergence. We see that reflected in the affine solution’s noisy force field.
Conversely, our prolongation smoothly diffuses the force field leading to
convergent solutions at all levels of the hierarchy.
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Fig. 15. Jittery Convergence: Due to errors in its force projection, the
affine operator generates jittering artifacts and stagnated convergence that
halts solutions well away from equilibrium (Top-Right). In contrast our PSQ
prolongation converges to low tolerance solutions that capture detailed
wrinkling deformation (Bottom-Right), without artifact.

different levels for linear multigrid solving. However, when applied
directly to progressive simulation evaluations, this results in the
loss of extrinsic surface details relative to the original input and so
the inability to capture rest-shape in simulation (see Figure 6).

Affine Progressive Meshes. Best-fit affine transformation [Liu and
Jacobson 2019], can be applied as a rest-shape preserving, linear
prolongation operator. However, there are three practical limitations
that make it unusable for progressive simulation:

o Lack of sparsity: As the number of edge decimations increases,
the prolongation matrix created via the affine prolongation
becomes prohibitively dense (please see our discussion in Ap-
pendix A).

Prolongation artifacts: For flat regions the rank deficiency in the
affine fitting (despite the remedy provided by Tikhonov regu-
larization) produces significant artifacts, making the prolonged
geometry unsuitable for visualization and force sampling (see
Figure 13).

Force restriction artifacts: Most importantly, affine prolongation
performs poorly in restriction, i.e., when<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>