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Figure 1: Least-squares rotation fitting is a core low-level subroutine in a number of important high-level tasks in computer graphics,
geometry processing, robotics and computer vision.

Abstract
Across computer graphics, vision, robotics and simulation, many applications rely on determining the 3D rotation that aligns
two objects or sets of points. The standard solution is to use singular value decomposition (SVD), where the optimal rotation is
recovered as the product of the singular vectors. Faster computation of only the rotation is possible using suitable parameteriza-
tions of the rotations and iterative optimization. We propose such a method based on the Cayley transformations. The resulting
optimization problem allows better local quadratic approximation compared to the Taylor approximation of the exponential
map. This results in both faster convergence as well as more stable approximation compared to other iterative approaches. It
also maps well to AVX vectorization. We compare our implementation with a wide range of alternatives on real and synthetic
data. The results demonstrate up to two orders of magnitude of speedup compared to a straightforward SVD implementation
and a 1.5-6 times speedup over popular optimized code.

1. Introduction

Finding the best rigid alignment between two sets of corresponding
points is an important computational problem across essentially all
areas of science and engineering. It has been introduced under var-
ious names and a variety of solutions have appeared independently
in the different fields. We formally state the problem and survey
common computational approaches in Section 2.

Rigid alignment has become a time-critical task in geometric
modeling and animation of elastic materials. In both areas, the be-
havior of a material is described by non-linear energies that mea-
sure only the elastic deformation but are invariant to (local) rigid
motions. It has been observed that the energies can often be min-
imized in a so-called local-global approach (or block-coordinate
descent), a global solution of a sparse linear system and the local
computation of rigid alignment [MHTG05,SA07,CPSS10]. In par-

ticular, the sparse systems are commonly constant throughout the
minimization, allowing to factor the system once and solve each
step by backsubstitution. In this setup, computing the local rigid
transformations has become the bottleneck.

We suggest an approach to compute the local rotation, geared
towards scenarios that are dominated by small rotation updates.
Our main technical contribution is a careful analysis enabled by
locally parameterizing rotations using the Cayley transformation
(Section 3) rather than the more commonly used exponential map.
The Cayley transformation leads to rational function in three vari-
ables representing the squared distances of corresponding points.
Optimizing this function iteratively improves over naive Newton
iterations by significantly widening the basin of attraction, while
on the other hand avoiding performance penalties introduced by
damping (see Section 4).
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We have implemented our algorithm as well as several others.
Another core contribution of our work is a comprehensive com-
parison among many if not all current methods for computing
least squares alignment. In order to provide meaningful statistics,
we collect a large number of data points from actual applications
such as interactive deformations using as-rigid-as-possible defor-
mations [SA07] and co-rotational elasticity [CPSS10]. Compared
to a state of the art optimized SVD implementation [MST∗11] we
see a speedup of at least 1.5×, and more for smaller rotations. In
the regime of approximating very small rotational updates with a
single (Newton) step [KKB18], our approach (Cayley Conserva-
tive) always achieves better accuracy and suffers 73% fewer failure
cases towards convergence.

2. Background

The problem of rigid alignment can be stated as follows: con-
sider two corresponding sets of n points {xi ∈ R3} and {yi ∈
R3}. Compute the rigid transformation that minimizes the (pos-
sibly weighted) sum of squared differences between corresponding
points:

argmin
RTR=I,|R|=1

∑
i

wi‖Rxi−yi + t‖2. (1)

The optimal translation (t ∈ R3) is independent of the rotation and
aligns the weighted centroids of the points. For this reason it is
common to assume the point sets have been translated so that their
weighted centroids are in the origin and focus only on (the more
difficult) problem of computing the rotation R.

The information about the relative orientation of the points can
be compactly captured in the cross-covariance matrix. For this we
write the (translated) points in matrix form as X,Y ∈ R3×n, the
weights in a diagonal matrix W, and then the (weighted) cross-
covariance matrix as

M = XTWY. (2)

The prevalent approach to computing the rotation uses the SVD. By
elementary transformations [SHR17], the minimization problem in
Eq. 1 can be expressed in terms of the matrix trace of only the
cross-covariance matrix M and the desired rotation M:

argmax
RTR=I,|R|=1

tr(MR) . (3)

This maximization problem is solved by computing the SVD M =
UΣVT and then setting

R = U

1
1
|UVT|

VT. (4)

The lower right entry in the diagonal matrix accounts for the case
that M has negative determinant, in which case the product of U
and VT would correspondingly contain an unwanted reflection.

This solution is known for a long time. Schönemann [Sch66] is
often credited with being the first to solve the case of finding an or-
thogonal matrix. The solution above with forcing a special orthogo-
nal matrix is sometimes referred to as Kabsch’s algorithm [Kab76]

and has been (re-)discovered multiple times in different areas of
application [AHB87, Mar87, Ume91].

Based on our survey of the literature, the SVD-based approach
is also the one most commonly used in graphics. This explains the
enormous effort in optimizing the computation of the SVD for 3×3
matrices on current multi-core hardware. Sifakis et al. [MST∗11]
have analyzed the operations necessary for computing the SVD of
a 3× 3 matrix and greatly optimized the computation. They pro-
vide implementations exploiting current hardware using SIMD and
streaming architectures using SSE and AVX. To our knowledge and
consistent with our experimental findings, their code currently pro-
vides the fastest way to compute the SVD.

Other approaches for computing the rotation are available as
well. Faugeras & Hebert [FH86] and Horn [Hor87] derive a direct
method using a quaternion representation by computing the eigen-
vector of an appropriately assembled 4× 4 matrix. Dual quater-
nions have been successfully used in graphics for representing
the rigid motion (not just the rotation part); a construction for
solving the rigid alignment similar to the one for quaternions ex-
ists [WSV91]. We have found claims that the quaternion based ap-
proach is faster than SVD, however, our experiments fail to support
this. Interestingly, one past survey [ELF97] concluded that the dual
quaternion methods were fastest by a close margin for the general
rigid body fitting problem.

The conversion into an eigen problem can also be used without
transforming to a quaternion-based representation [HHN88,Shu78,
Mor97,YZ13]. It is claimed that the fastest way to solve the eigen-
problem is by analytically solving for the quartic roots.

Our approach, in contrast, starts from the Cayley transforma-
tion for representing the rotation. This parameterization enjoys the
property of only requiring 3 variables. It is known to be quite useful
close to the origin (i.e., identity) and less so for large rotation an-
gles. This nicely fits the dominant case in the iterative solvers used
in graphics. The Cayley parametrization of rotation matrices ap-
pears in other contexts such as kinematics for robotics [GKWT98],
as a mathematically convenient tool for deriving other quantities
[Nor08, MM11], or to design a differentiable parametrization of
random rotations [JHD18]. It has also been used for more gen-
eral alignment problems that cannot be solved using SVD or eigen-
decomposition [WV06].

Newton’s method has been applied to polar decomposition
[Hig86, BX08], and recently Kugelstadt et al. [KKB18] also ap-
plied the Cayley transformation in this context. Their method is
based on the local quadratic approximation implicitly used in the
Newton step, representing rotations as quaternions. Our approach,
in its simplest form, is similar except for the use of quaternions as
a representation.

3. Cayley parameterization

The Cayley parameterization of rotations is based on skew-
symmetric matrices. In R3 we can write the skew-symmetric matrix
explicitly as

Z =

 0 −z2 z1
z2 0 −z0
−z1 z0 0

 (5)
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and represent the three unknowns as z = (z0,z1,z2). Then any rota-
tion matrix except for rotations by π can be expressed as

R = (I+Z)(I−Z)−1. (6)

The axis r and angle θ of the rotation represented by R are param-
eterized as

z = tan
θ

2
r ⇐⇒ r = z

‖z‖ , θ = 2arctan‖z‖. (7)

Compared to the more commonly used exponential map, the axis of
rotation is also encoded as the direction of the 3-component vector,
but the angle of rotation is a non-linear function of the length going
to infinity as the angle approaches π.

Based on this we can write the trace function (Eq. 3) to be max-
imized as

g : R3 7→ R, g(z) = tr
(

M(I+Z)(I−Z)−1
)
. (8)

In the following, our goal is to rewrite this as a function of z rather
than Z.

The inverse of I−Z has a simple expression:

(I−Z)−1 =
1

1+ zTz

(
I+ zzT+Z

)
. (9)

This leads to the representation for 3×3 rotations as

(I+Z)(I−Z)−1

=
1

1+ zTz

I+ zzT+2Z+ Zz︸︷︷︸
=0

zT+ Z2︸︷︷︸
=zzT−zTzI


=

1
1+ zTz

(
(1− zTz)I+2zzT+2Z

)
. (10)

Plugging in this leads to

g(z) = 1
1+ zTz

(
(1− zTz) tr(M)+2tr(MzzT)+2tr(MZ)

)
.

(11)
For the last trace in the sum we introduce the following notation

tr(MZ) =

m12−m21
m20−m02
m01−m10

T

z = mTz (12)

and we note that

tr(MzzT) = zTMz = zTMTz. (13)

Putting everything together this leads to the following rational
quadratic function to be maximized:

g(z) =
tr(M)+2mTz+ zT

(
M+MT− tr(M)I

)
z

1+ zTz
. (14)

Note that this function is valid (and not just an approximation to the
problem) whenever the optimal rotation does not require a rotation
by π.

Analysis It is instructive to analyze the behavior of g on the sym-
metric and antisymmetric parts of M. For this consider

MS =
1
2

(
M+MT

)
MA =

1
2

(
M−MT

)
(15)

and denote gS and gA the functions resulting from restricting g to
the symmetric, resp. anti-symmetric part of M. We have

gS(z) =
tr(M)+ zT

(
M+MT− tr(M)I

)
z

1+ zTz
and (16)

gA(z) =
2mTz

1+ zTz
(17)

and see that g(z) = gS(z)+gA(z) for any M and z.

We can analyze the maximum of each of the functions gS,gA
independently. In both cases it is convenient to parameterize z =
κz̃,‖z̃‖ = 1. For gS note that tr(M) is independent of z̃ so we can
choose it as the eigenvector corresponding to the largest eigenvalue
of 2MS− tr(M)I in order to maximize this term. Let λ0 ≤ λ1 ≤ λ2
be the eigenvalues of MS and recall that MS and MS +αI have the
same eigenvectors. Then the largest eigenvalue of 2MS − tr(M)I
is 2λ2− tr(M). So maximizing gS boils down to setting z̃ to the
eigenvector corresponding to λ2(MS) and maximizing

gS(κz̃) = tr(M)+(λ2− tr(M))κ2

1+κ2 . (18)

This function takes on the value tr(M) for κ = 0 (its only possi-
ble critical point) and λ2− tr(M) for κ→±∞, and is monotone
in-between. This means it is maximized at κ = 0 (corresponding
to the identity rotation) if λ0 +λ1 > 0. Conversely, if λ0 +λ1 < 0
the maximal value is 2λ2− tr(M) for a rotation by ±π around z̃.
The function is constant if λ0 + λ1 = 0. This means any rotation
around z̃ leads to the maximal value tr(M). If the situation is (nu-
merically) close to this case it will be difficult to optimize based on
the gradient, because the derivative of g can be arbitrarily close to
zero.

For gA the optimal choice of direction is z̃ = m/‖m‖ and we get
the equation

gA(κz̃) = 2κmTm
‖m‖

(
1+κ2

) = ‖m‖ 2κ

1+κ2 , (19)

which takes on the maximal value ‖m‖ for κ = 1.

For any M that is neither symmetric nor anti-symmetric g takes
on its maximal value for finite non-zero z. In the next section we
discuss how to find the maximum using gradient-based iterative
approaches.

4. Optimization

In order to find the optimal rotational alignment we now must de-
termine the three variables z that maximize Eq. 14. Unless the func-
tion is flat, and if a good starting point is provided, iterative maxi-
mization using the gradient is the method of choice. In the follow-
ing we first discuss the standard Newton approach, and then how to
improve exploiting the quadratic rational representation of g.

4.1. Newton optimization with reparameterization

It is straightforward to take derivatives of g because it is a rational
polynomial. The gradient and Hessian are given in the Appendix A.
This immediately enables Newton optimization for the maximiza-
tion.

© 2021 The Author(s)
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A typical approach in the literature using Newton iterations is to
reparameterize the rotations after each step [KKB18]. The main
motivation appears to be the distortion introduced with the lin-
earization of the rotations away from the origin. In our derivation
we also see that the derivatives are significantly simpler at the ori-
gin (i.e. z = 0):

∇g(0) = 2m (20)

Hg(0) = 2
(

M+MT−2tr(M)I
)
. (21)

Note that the resulting Newton step is identical to the one de-
rived based on the exponential map [KKB18]: The reason for this
is that the Cayley transformation and exponential map only dif-
fer in how the angle for rotation is parameterized. For the Cayley
transformation we have ‖z‖= tanθ/2 and the identity follows from
tanx = x+O(x3).

In our setup, the idea of reparameterizing after the update leads
to the following procedure:

1. Start with any guess for the optimal rotation R0. This could be
identity, however, we will explain later where this guess could
come from depending on the application.

2. In each step, apply the rotation, i.e. compute Mi = MRi.
3. Compute the optimal value zi. In the case of Newton optimiza-

tion this means zi =−Hg(0)−1∇g(0). We will later provide an
improved update step.

4. Turn the Cayley representation zi of the rotational step into a
rotation Ri+1 and go back to step 2 (until the step zi converges
to zero).

Each step requires only very few operations. The most expensive
computation is the solution of a 3×3 linear system. Once we have
computed the update in Cayley representation we need to turn it
into a rotation matrix. This can be done efficiently based on Eq. 10.
Using this step, we arrive at the overall algorithm detailed in pseu-
docode below. This procedure relies on an update step in Cayley
representation. We next explain how to improve over the standard
Newton step.

ALGORITHM 1: Optimization of rotational alignment.
Function Rotation alignment(cross-covariance matrix M,

initial rotation R)
repeat

M′←MR
z← Cayley-Step(M′)
s← zTz
R← 1

1+s R
(
(1− s)I+2zzT+2Z

)
until s < ε

return R

4.2. Improved local quadratic approximation

A common problem with the Newton method is that convergence
depends on how well the function is locally approximated by the
quadratic function derived from the gradient and Hessian. It is gen-
erally not easy to determine from M if the local quadratic approx-
imation around z = 0 is "good enough". One observation is that
we expect that the quadratic function has negative definite Hessian

around the maximum. Rather than checking the definiteness of the
Hessian (which would be expensive) it is customary to subtract a
small multiple of the identity to ensure the desired definiteness of
the Hessian and, thus the desired concavity of the local approxi-
mation around the maximum. This approach is often referred to as
damping.

Rather than relying on such heuristics, it turns out that it is possi-
ble to characterize the maximum of g(z) in a helpful way. For this
we make use of an ancient technique that enables the analytical
computation of the critical points of a rational quadratic function
without today’s knowledge of calculus [Suz05]. Our approach is
inspired by this pre-calculus (i.e., “ancient”) approach for finding
the extreme points of a rational quadratic function: given an ex-
treme value of the function, we can turn the problem of finding
the corresponding extreme point into finding a root of a quadratic
polynomial. Since the extreme point is generically unique, the root
is unique, so it is not only a root but also an extreme point of the
quadratic function. This leads to a linear equation characterizing
the value of the extreme point. If the function is univariate this ap-
proach indeed leads to an ’analytic’ solution – the same one that
could be derived using calculus. In the multivariate case it leads to
an eigenproblem (again, similar to the derivation based on calcu-
lus), which is what we intend to avoid. However, what we do get
from this analysis is a family of quadratic fits parameterized by the
(estimate of) the extreme value. In terms of the format, the result-
ing linear equation for locating the extreme point turns out to be
identical to a damped Newton step. Conservatively estimating the
extreme value leads to a modified Newton step that is generally
more robust than standard Newton and faster than damped Newton
with a fixed parameter towards convergence.

Assume we know that the maximal value of g is c. Since the
denominator of g is strictly positive we get

tr(M)+2mTz+ zT
(

M+MT− tr(M)I
)

z− c
(

1+ zTz
)
= 0.

(22)
This is a quadratic equation in z. Unless the situation is degenerate,
there is only a single rotation that minimizes the squared distances
of the points (i.e. M has full rank). This implies that the quadratic
equation is satisfied only for a single point z∗. This single solution
has to be an extreme point of the quadratic so it is also characterized
by setting the gradient to zero

2(Tz∗+m)+2cz∗ = 0, (23)

leading to (
M+MT− (tr(M)+ c)I

)
z∗ =−m. (24)

Note how this compares to the Newton step, for which we found
c = tr(M). Indeed, if the solution to the maximization problem is
z = 0 than the optimal rotation is identity and the maximal trace is
tr(M).

Our modification to the Newton step, rather than blindly
adding a constant value for c, which would amount to the
damping described above, is to approximate the maximal
value of g. The inset shows a one-dimensional cut through
g in black. The Newton iteration approximates the maxi-
mum based on the Taylor approximation in 0, shown in red.

© 2021 The Author(s)
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Figure 2: Improvement of the relative distance of g to the maximal value in a single step. Upper row shows data including optimal rotations
up to θ = π/3, lower row up to θ = π/12. Newton steps (c = tr(M), left) work well if the optimal rotation is small, but may fail to improve for
larger angles. Damping (c = 1.2tr(M), middle left) improves the situation for larger angles, but cause reduced convergence speed for small
angles. Our approximation based on ‖m‖ (middle right) works well in both regimes. The right column shows reparameterized cuts through
g(κz̃) for one data point in the left scatter plots. The cut is chosen for each approximation based on the direction of z, i.e. the cuts are along
different directions, and they are reparameterized based on angle; markers illustrate the updated step, which is not necessarily the maximum
along the curve. The black curves, for reference, illustrate the direction of optimal rotation and the black dot indicates the maximal value of
g. The upper graph illustrates how Newton steps generate local approximations that are too flat and then overshoot, the lower graph how
damping reduces the step size.

x

gDifferent choices of c give rise to
different local quadratic approxi-
mations of g. Underestimating c
(the blue curve) causes overshoot-
ing. while overestimating (green)
results in choosing z closer to the
origin than the optimum. Unless
the maximum of g is close to the origin, the approximation is more
sensitive to underestimating than overestimating c – the dotted line
shows c dependent on z.

Our idea for approximating c is based on the observation

max
z

g(z) = max
z

(gS(z)+gA(z))≤max
z

gS(z)+max
z

gA(z), (25)

with equality only if one of the two maxima vanishes since the two
maxima are attained for different values of z. A simple analysis
reveals that the factor equal maxima is bounded by

√
2 motivating

the heuristic

max
z

g(z)≈
((

max
z

gS(z)
)2

+
(

max
z

gA(z)
)2
) 1

2

. (26)

Based on our analysis of gS and gA we have the following approxi-
mation

c≈
(

max(tr(M)2,(2λ2− tr(M))2 +mTm
) 1

2
(27)

Computing mTm is easy and can be readily used to improve the
estimate for c. Compared to the standard Newton step it avoids
overshooting and leads to better stability, yet it avoids the penalty
in convergence speed associated with damping. Figure 2 demon-
strates this for matrices M generated from points sampled uni-
formly in [−1,1]3. We measure the effect of z computed from c

by generating a new matrix M′ = MR(z). Then we consider the
relative improvement of the absolute trace error r = |maxg(z)−
tr(M′)|/|maxg(z)− tr(M)|. Newton steps work well if the angle
of the best rotation is small, but the absolute error fails to improve
if the necessary rotation is large, i.e. the maximum z∗ is far from
the origin. Using c =

√
tr(M)2 +mTm significantly improves the

situation. Damping, i.e. using c = κ tr(M) with κ > 1 helps to avoid
problems for larger necessary rotations, but exhibits decreased con-
vergence for small angles, whereas our solution behaves similar to
standard Newton step also for small angles. The graphs on the right
illustrate the local approximation resulting from the different ap-
proximations in the direction z and which point is chosen along the
curve.

It remains to approximate the term max(tr(M),2λ2− tr(M)) for
which we need an approximation of λ2(MS) that can be efficiently
computed. As mentioned before, if we need λ2, the necessary rota-
tion is large, and it is better to overestimate to ensure convergence.
For this reason we suggest to use Gershgorin disks to generate a
conservative upper bound:

2λ̃2 = max
i

(
2mii + ∑

j 6=i
|mi j +m ji|

)
(28)

4.3. Efficient Computation

All computations involved for performing a single step require only
few elementary operations. The most expensive part is solving the
linear system(

M+MT− (tr(M)+ c)I
)

z = Hz =−m, (29)

© 2021 The Author(s)
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for which we suggest to use Cramers rule. Let

H = (h0,h1,h2) , (30)

then we find the elements of z as

z0 = |H|−1 |−m,h1,h2| (31)

z1 = |H|−1 |h0,−m,h2| (32)

z2 = |H|−1 |h0,h1,−m| . (33)

This requires only computing 4 determinants, each of which is
composed of 6 · 2 multiplications, 4 additions, and 1 subtraction.
We provide pseudocode for the solution step computed in this way
as Algorithm 2 below.

ALGORITHM 2: Optimization step for rotational alignment in
Cayley parameterization.

Function Cayley-Step(M)

m← (m12−m21,m20−m02,m01−m10)
T

2λ2← maxi
(
2mii +∑ j 6=i |mi j +m ji|

)
t← tr(M)

g̃S← max(t,2λ2− t)

(h0,h1,h2)←M+MT−
(

t +
√

g̃2
S +mTm

)
I

h−1← |h0,h1,h2|−1

d0← |−m,h1,h2|
d1← |h0,−m,h2|
d2← |h0,h1,−m|
return h−1(d0,d1,d2)

5. Implementation

We implemented our method in C++ (see supplemental material
for code). The starting point for our implementation does not use
vectorization.

Many applications such as co-rotational elasticity or as-rigid-
as-possible deformation require best-fit rotations for many (e.g.,
millions) of cross-covariance matrices. We further optimized our
code using single-core SIMD vectorization using the AVX2 stan-
dard. Rather than attempt to utilize esoteric instructions (e.g,
_mm_permute_ps), we follow a straight-forward best prac-
tice guideline [Pü11], which advises to rearrange the input
data layout to accommodate trivial vectorization of each float-
ing point operator in the scalar code. For example, the scalar
product a = b*c becomes the 8-wide vectorized product a
= _mm256_mul_ps(b,c). AVX supports eight simultaneous
single-precision floating point operations. Therefore, we expect as
input a n-long list of 3× 3 M matrices laid out in memory as
{m0

0,0, . . . ,m
7
0,0,m

0
0,1, . . . ,m

7
0,1, . . . ,m

0
2,2, . . . ,m

7
2,2,m

8
0,0, . . .}, without loss of

generality we assume n is divisible by eight. To best utilize this vec-
torization any up-/down-stream functions should be similarly rear-
ranged to read/write data in this order. If not, a (small) reshuffling
overhead is incurred.

Finally, we can further parallelize our streaming implementation
using a parallel for loop (e.g., LIBIGL’s igl::parallel_for)
to take advantage of multi-core CPUs. This was omitted during per-
formance benchmarking.

...

rest shape interactive ARAP posing to collect M matrices 

Figure 3: Rather than test on random matrices, our performance
benchmark is designed to capture the distribution of matrices
that occur in common graphics applications such as as-rigid-as-
possible deformation.

We include our implementation (and those of many previ-
ous works) in our supplemental material and intend to release
our optimized code open source for the community to use.
https://github.com/ErisZhang/fast-rotation-fitting.git

6. Experiments & results

We now compare our approach to existing ones from the liter-
ature. Note that the actual performance of different algorithms
will depend on the specific implementation, the hardware, and the
data (i.e. the cross-correlation matrix). A central and long-term
contribution of our work is the implementation of many differ-
ent algorithms in one framework. This allows users to select the
best algorithm for their platform and their data distribution. It
also fosters continuing development of rigid alignment algorithms.
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As an example, we mainly
focus on data coming from
real applications, as this is
likely different than random
distributions. The inset fig-
ure shows the dramatic dif-
ference between fast con-
vergence for small rotations
and slow convergence for an extreme case (random cross-
covariance matrix).

6.1. Cross-covariance matrix dataset

Our main objective is to speed up local rotation estimation for
graphics applications. It is conceivable that the cross-covariances
M for which the optimal rotations have to be computed have char-
acteristic distributions in each application. As discussed, our ap-
proach may be faster for some inputs and, consequently, we want
to test it on inputs that resemble the actual situation in the applica-
tion.

We have selected as-rigid-as-possible (ARAP) surface deforma-
tion [SA07] and a co-rotational elasticity simulation based on the
geometric model by Chao et al. [CPSS10] (see Fig. 1). For both
techniques we use the implementations publicly available in LI-
BIGL [JP∗16]. For ARAP, we have performed an interactive editing
session (see Figure 3) and recorded the matrices associated with
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...

co-rotational elasticity simulation

Figure 4: The least-squares rotations fit to each element of this
tetrahedral mesh change only slightly each frame of the animation,
not to mention each iteration of the non-linear solver. Our one-step
warm-start algorithm takes advantage of this.

each of the vertex neighborhoods. For the volumetric simulation,
we drop a volumetric octopus mesh above a ground plane and col-
lected deformation gradient matrices associated with each tetrahe-
dron (see Fig. 4).

This collection process ensures that matrices come from actual
examples and represent the warm-start-able nature of the computa-
tions: consecutive frames have similar deformations and thus sim-
ilar best fit rotations. This similarity is further compounded by the
iterative nature of the local-global solvers employed.

Before writing the matrices into a file we have applied the best
fitting rotation from the previous iteration or frame (if any), which
we expect to be close to the sought best fit rotation. Recall that our
approach could make direct use of this guess for potential speed up.
To provide other approaches with a similar advantage, we factor out
this rotation, so that the rotational component is potentially small,
and all methods may profit from estimating a rotation that is close
to identity.

Fig. 5 shows the proximity of the optimal rotation to identity for
the case of the ARAP data – the optimal rotations for the data from
the co-rotation method is even more concentrated around identity
and therefore omitted. We also analyzed the condition numbers of
the collected co-variance matrices. In case of ARAP they concen-
trated around 105. The reason for this is likely that ARAP col-
lects data only from surfaces, so that the variation in normal direc-
tion is mostly small compared to the tangents. As we will see, our
method is unaffected by this bad conditioning. The condition num-
bers for the co-rotation data are in the range 101−103. So while the
data sets are similar in the sense that the optimal rotations are bi-
ased towards identity, they are dissimilar in the distribution of their
anisotropic scaling.

For completeness, we also verified the validity of our solver on
matrices with 9 coefficients selected uniformly random in the inter-
val [0,1].

6.2. Experimental results

We tested our proposed Cayley-based methods on a variety of com-
pilers, CPU setups, and operating systems (e.g., Linux, Mac, Win-
dows). Based on the value of c, we name them Cayley (c = tr(M)),
Cayley Conservative (c =

√
tr(M)2 +mTm) and Cayley Gersh-

gorin. Note that mathematically Cayley is equivalent to [KKB18]
that uses a single Newton step with quarternions. In all cases, the
general result is the same. As an aside, we found that automatic

0 0.02 0.040 0.02
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10−1

‖R
−

R
∗
‖ 2

0.5 1.5 2.5 ‖R− I‖2

Figure 5: We collect two datasets of co-variance matrices M as a
benchmark for least-squares fitting a rotation matrix M. Light blue
shows a histogram over the differences of optimal rotation R and
identity for data collected from an interactive ARAP session, which
contained more data whose optimal rotations are further from iden-
tity. Over all our data, the left part of the plot accounts for more
than 90% of the data. The red dots indicate the error of a rotation
R∗ based on a single Newton step.

vectorization varies significantly across compilers, but in every case
the manually written AVX code was fastest. Experimental reports
are conducted on a Mac laptop equipped with a 2.3 GHz Core In-
tel i9 CPU with 16GB of memory using the default clang compiler
(Apple LLVM version 12.0.0). To conduct fairer comparisons, we
omit the use of multi-core parallelization unless otherwise noted.

For the data collected from the actual application examples we
test the number of iterations that are necessary for convergence. In
particular, we test the accuracy based on a single Newton step. Our
analysis show that for over 90% of the data a single Newton step
results in a Frobenius norm error of < 10−5, This is visualized in
the scatter plot in Fig. 5. In addition, in the application examples
some error is acceptable, because it will be corrected for in subse-
quent iterations. In the following we include timings based on this
idea and term this approach warm-start.

In Table 1, we compare our core non-vectorized methods with
and without the warm-start to various baseline methods. We take
the SVD computed with Eigen v3.3.7 [GJ∗19] as a reference. We
also implemented Horn’s quaternion-based method [Hor87] using
Eigen, employing its 4× 4 eigen solver. We also include the pub-
licly available implementations from Wu et al. [WLZL18], Sifakis
et al. [MST∗11] and Kugelstadt et al. [KKB18]. Across the dif-
ferent compilers we tried, Eigen’s SVD performance varied sub-
stantially more than our method or the others. In the interest of
fairness, we report timings on the Mac+clang configuration where
Eigen’s performance was best. Despite reporting relative speedups
for this specific configuration in Table 1, the upshot of the compar-
ison holds on all machines we tried on.

On the uniform random data generated from restricting the Euler
angles of the rotation to [−π/1.2,π/1.2], Cayley Gershgorin con-
verges in 3 iterations on average and is 2.7× faster. This is already
faster than all the other methods tested. On the randomly generated
cross-covariance matrices, Cayley Gershgorin converges in 5 itera-
tions on average and is 1.6× faster. However, the true performance
boost comes when exploiting the existence of a good starting point,
as is automatically done by selecting the data sets collecting from
the real applications. In this case Cayley and Cayley Conservative
are 12.9× and 12.3× faster than Eigen’s SVD, while the timing of
other methods is almost unchanged. Although Cayley Conservative
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Method
Speedup over

Eigen 3×3 SVD
[Hor87] 0.7×
[MBCM16] 1.5×

Polar Decomposition 1.5×
[WLZL18] 1.6×

Cayley Gershgorin 2.7×
Cayley Conservative + warm-start 12.3×
Cayley + warm-start 12.9×

Table 1: Using SVD computed with Eigen [GJ∗19] as a base-
line (:= 1.0×), we compare the relative speedups of various meth-
ods. Our (non-vectorized) “Cayley + warm-start” implementation
achieves a 12.9× speedup.

Speedup over
Method (+ avx) Eigen [MST∗11]
[MST∗11] 10.4× 1.0×

Cayley Gershgorin 15.7× 1.5×
Cayley Conservative + warm-start 63.1× 6.0×
Cayley + warm-start [KKB18] 70.1× 6.7×

Table 2: Many applications in graphics already take advan-
tage of the high-performance avx-vectorized code from Sifakis et
al. [MST∗11] (10.4× speedup over Eigen). Treating this method
as a baseline, the family of Cayley-based methods achieves supe-
rior speedups.

is slightly slower, it always achieves better accuracy (see Figure 2)
and suffers 73% fewer failure cases in our interactively collected
dataset. If using Cayley Gershgorin, we found no failures cases
in our experiments. However, for a local-global solver like ARAP,
perfect convergence at each local step is not strictly required since
as long as the energy is reduced in each step it will converge to
a local minimum. We found no noticeable effect of the choice of
rotation on the local minimum attended (see Figure 7).

Next, in Table 2, we compare to the SIMD vectorized SVD-
method of Sifakis et al. [MST∗11]. Keeping Eigen’s SVD as a base-
line, their method using AVX achieves a 10.4× speedup, slightly
slower than our non-vectorized, warm-start Cayley code. In con-
trast, adding AVX vectorization to our warm-start Cayley-based
methods, we run more than 60× faster than Eigen’s SVD or more
than 6× faster than the AVX SVD code of Sifakis et al. [MST∗11].

6.3. Applications

To qualitatively ensure the correctness of our implementation we
attach it as the local-rotation fitting subroutine to a number of stan-
dard graphics applications. For interactive as-rigid-as-possible de-
formation and co-rotational elasticity simulation, solving the corre-
sponding sparse linear system should scale super-linearly with the
number of vertices in the mesh. This suggests that this global step
would be a bottleneck compared to the linear-complexity local step
of fitting rotations. However, using a standard SVD-based method,
the local fitting dominates the wall-clock performance. In Fig. 6,
we show that using our Cayley method with the warm-start for the

local: Cayley +warm-start +avx

# mesh triangles (log scale)

Computation time comparison of local-global solver
milliseconds (log scale)

10

1

0.1

100

1000 10,000 100,000

local: Eigen SVD

global: Chol solve

Figure 6: Typical implementations of the local-global solver (cf.
[SA07]) are bottlenecked by the least-squares rotation fitting de-
spite the sparse back-substitution theoretically having larger com-
putational complexity. With our fast update, this is no longer the
case. The local step is an order of magnitude faster than the global
step.
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Figure 7: The choice of rotation-fitting algorithm, while having lit-
tle effect on the converged solution of a local-global ARAP solver,
has a large impact on wall clock time to solution. Since the Cay-
ley method only works for small rotations, for fair comparison, we
warm-start the first local step of the Cayley method with Eigen’s
SVD (for maximum accuracy).

local step, the rotation fitting is significantly faster than the global
step.

7. Discussion

We have analyzed the timings based on two specific deformation
techniques, one surface-based and one volumetric. The energies
used and the local-global minimization approach are prototypical
and represent a much wider class of non-linear deformation and
simulation techniques [LBK17, BML∗14, BDS∗12, Vax14]. Also
related problems that require quickly estimating the best fitting ro-
tation in 3D will profit from our approach. To name a few spe-
cific areas: real-time character skinning [JBK∗12, LH16], anima-
tion compression [LD12], fluid simulation [YT13], rigid registra-
tion (e.g., iterative closest point method) [BM92], pose estima-
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tion from multiple cameras [Ume91], chromosome reconstruction
[ZDH∗18].

Our proposed Cayley-based approaches have two fundamental
features:

1. It is inherently simpler than approaches that require computing
the SVD of a 3× 3 matrix or an eigenvector of a 4× 4 ma-
trix. The small number of elementary operations makes sure the
Cayley-based approaches will likely be useful even in the light
of ever changing hardware. It also eases optimized implemen-
tation for specific platforms, currently existing in the future. In
particular, it requires no approximation of trigonometric func-
tions.

2. It allows exploiting the common situation that a good estimate
for the rotation is available. It appears that other approaches gen-
erally fail to provide this feature, or their degradation is catas-
trophic for the application, such as providing approximate rota-
tion matrices that are not orthogonal. We tried introducing ac-
curacy / computation time tradeoffs in the SVD approaches but
failed to find a working solution. This might be an avenue for
future research, as the complete SVD is useful in some applica-
tions.
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Appendix A: Derivatives

Here we provide the gradient and Hessian of the trace function in
Cayley parameterization given in Eq. 14. The derivative of the de-
nominator 1+‖z‖2 is 2z. For the numerator we find

2m+
(

2(M+MT)−2tr(M)I
)

z (34)

The quotient rule for differentiation then yields the gradient as

∇g(z) = 2
1+ zTz

(Tz+m) − 2t(z)
(1+ zTz)2 z (35)

where we have used the abbreviations

T = M+MT− tr(M)I (36)

and

t(z) = (1− zTz) tr(M)+2zTMz+2mTz. (37)

The gradient of the latter function is

∇t(z) = 2(Tz+m) (38)

leading to the Hessian as

Hg(z) = 2
(

1+ zTz
)−1

(39)(
T− 1

1+ zTz

(
t(z)I+2(Tz+m)zT

)
+

2t(z)
(1+ zTz)2 zzT

)
.

For evaluating the Hessian at z = 0 we note that t(0) = 1.
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