The trade-off between speed and fidelity in cloth simulation is a fundamental computational problem in computer graphics and computational design. Coarse cloth models provide the interactive performance required by designers, but they can not be simulated at higher resolutions (“up-resed”) without introducing simulation artifacts and/or unpredicted outcomes, such as different folds, wrinkles and drapes. But how can a coarse simulation predict the result of an unconstrained, high-resolution simulation that has not yet been run?
We propose Progressive Cloth Simulation (PCS), a new forward simulation method for efficient preview of cloth quasistatics on exceedingly coarse triangle meshes with consistent and progressive improvement over a hierarchy of increasingly higher-resolution models. PCS provides an efficient coarse previewing simulation method that predicts the coarse-scale folds and wrinkles that will be generated by a corresponding converged, high-fidelity C-IPC simulation of the cloth drape’s equilibrium. For each preview PCS can generate an increasing-resolution sequence of consistent models that progress towards this converged solution. This successive improvement can then be interrupted at any point, for example, whenever design parameters.