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Fig. 1. We introduce a novel geometric multigrid solver for curved surfaces. Our key ingredient is an intrinsic prolongation operator computed via parameterizing

the high resolution shape via its coarsened counterpart, visualized using colored triangles. By recursively applying this self-parameterization, we obtain a

hierarchy (from left to right) for our multigrid method (e.g., to solve heat geodesics [Crane et al. 2017], far left). ©model by Benoît Rogez under CC BY-NC.

This paper introduces a novel geometric multigrid solver for unstructured

curved surfaces. Multigrid methods are highly efficient iterative methods

for solving systems of linear equations. Despite the success in solving prob-

lems defined on structured domains, generalizing multigrid to unstructured

curved domains remains a challenging problem. The critical missing in-

gredient is a prolongation operator to transfer functions across different

multigrid levels. We propose a novel method for computing the prolongation

for triangulated surfaces based on intrinsic geometry, enabling an efficient

geometric multigrid solver for curved surfaces. Our surface multigrid solver

achieves better convergence than existing multigrid methods. Compared

to direct solvers, our solver is orders of magnitude faster. We evaluate our

method on many geometry processing applications and a wide variety of

complex shapes with and without boundaries. By simply replacing the direct

solver, we upgrade existing algorithms to interactive frame rates, and shift

the computational bottleneck away from solving linear systems.
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1 INTRODUCTION

Linear solvers are the heart ofmany geometry processing algorithms.

For positive (semi-)definite problems defined on surface meshes,
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Fig. 2. Many geometry processing algorithms that involve solving linear

systems Ax = b often consist of four steps: (1) loading a geometry, (2) build-

ing the left-hand-side A, (3) building the right-hand-side b, and (4) solving

the system Ax = b. Direct solvers (e.g., Cholesky) perform pre-computation

after building A, making it suitable for applications where only b is changing.

Geometric multigrid methods perform pre-computation solely based on

the geometry. Thus, even the entire system A, b are changing, geometric

multigrid solvers can still leverage the same pre-computed hierarchy to

solve the system efficiently.

direct solvers (e.g., Cholesky factorization) are commonplace. Unfor-

tunately, direct solvers do not scale and often become the bottleneck

for problems on high-resolution surface meshes. Especially for ap-

plications where the linear system changes at every iteration (e.g.,

simulation), direct solvers require an expensive re-factorization.

For problems on structured domains (e.g., 2D/3D regular grids),

an excellent alternative is geometric multigrid methods. Geometric

multigrid solvers perform pre-computation solely based on the ge-

ometry without knowing the linear system of interest (see Fig. 2).

This enables multigrid methods to solve the system efficiently in

linear time even when the system changes at each time step. Multi-

grid solvers already become non-trivial for unstructured grids (e.g.,

arbitrary triangle meshes in 2D or tetrahedral meshes in 3D), the

added complexity of immersing triangle meshes in 3D has left a

“black-box” multigrid solver for curved surfaces elusive until now.

In this paper, we propose a Galerkin geometric multigrid solver

for manifold surface meshes with or without boundaries. Our key

ingredient is a method for computing the prolongation operator

based on the intrinsic geometry. Our multigrid solver achieves a

better convergence rate compared to alternative multigrid methods.

Replacing direct solvers with our black-box surface multigrid solver
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leads to orders of magnitude speed-up. We show our method is

effective in a variety of applications ranging from data smoothing to

shell simulation, with linear systems of different sparsity patterns

and density. Our contributions turn existing algorithms into inter-

active applications (e.g., Fig. 19) and shift the bottleneck away from

solving linear systems (e.g., Fig. 23).

2 RELATED WORKS

Multigrid methods [Brandt 1977] have earned a reputation as one

of the fastest numerical solvers for solving linear systems. On struc-

tured domains (e.g., 2D/3D grid), multigrid is very well-studied both

theoretically [Hackbusch 2013; Trottenberg et al. 2000] and practi-

cally [Brandt and Livne 2011]. In graphics, multigrid has been an

attractive solution for interactive and large-scale applications on

structured domains, most prominently for image processing [Kazh-

dan and Hoppe 2008; Krishnan and Szeliski 2011] and simulating

fluids on large grids [Aanjaneya et al. 2019; Lai et al. 2020; McAdams

et al. 2010]. Even for problems where the original representation is

unstructured, an auxiliary background grid can be introduced for

multigrid to perform efficient computation and transfer the solution

back to the unstructured representation. For example, one can run

multigrid on a background hexahedral mesh to simulate elastic de-

formations [Dick et al. 2011; Zhu et al. 2010] and character skinning

[McAdams et al. 2011]. Chuang et al. [2009] deploy multigrid on

a background voxel grid to solve Poisson problems defined on the

surface mesh. To reduce the complexity of using structured repre-

sentations, adaptive multigrid methods are developed for subsurface

scattering [Haber et al. 2005], smoke simulation [Setaluri et al. 2014],

and other graphics applications [Kazhdan and Hoppe 2019].

Unstructured Euclidean Domains. Directly deploying multigrid to

unstructured “grids” in Euclidean domains (e.g., 2D triangle meshes

and 3D tetrahedral meshes) has also been an important problem

for decades. The main difficulties lie in how to construct the multi-

grid hierarchy and how to transfer signals back-and-forth across

different grid levels. In graphics, unstructured multigrid for 2D tri-

angle meshes is widely applied to cloth simulation where the design

pattern is prescribed by a 2D boundary curve. In the methods pro-

posed in [Jeon et al. 2013; Oh et al. 2008; Wang et al. 2018], they

generate the hierarchy in a coarse-to-fine manner by triangulating

the 2D design pattern and then recursively subdividing it to get

finer resolutions. Wang et al. [2018] generate the multigrid hierar-

chy from fine-to-coarse by clustering vertices on the fine mesh and

re-triangulating the 2D domain. When it comes to 3D tetrahedral

meshes, multigrid is commonly used to simulate deformable objects.

Georgii and Westermann [2006] build the hierarchy with different

tetrahedralizations of the same 3D domain. Otaduy et al. [2007]

repetitively compute the offset surface of the boundary mesh, deci-

mate the offset surface, and tetrahedral-mesh the interior to obtain

the hierarchy. Sacht et al. [2015] follow a similar technique but with

more elaborate and tighter fitting offsets. Adams and Demmel [1999]

recursively remove the maximum independent set of vertices and

tetrahedralize the interior. These unstructured multigrid methods

for the Euclidean domains rely on the fact that every level in the

hierarchy is a triangulation or tetrahedralization of the same space.

Thus, they can easily define linear prolongation using barycentric
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Fig. 3. When solving a Poisson problem defined on the surface mesh (top

right), we demonstrate that our multigrid based on the intrinsic prolonga-

tion (blue) converges faster than the algebraic multigrid methods (green),

including the classic Ruge-Stüben (RS-AMG) [Ruge and Stüben 1987] and

the Smoothed Aggregation algebraic multigrid (SA-AMG) [Vanek et al. 1996].

Note that we use an off-the-shelf implementation from PyAMG [Olson and

Schroder 2018] with their default multigrid hyperparameters. ©models by

3DWP (right) under CC BY-SA.
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Fig. 4. Compared to the prolongation based on the vertex 1-ring average

[Aksoylu et al. 2005] (orange), our prolongation (blue) leads to a faster

convergence rate when solving a Poisson problem on the surface (top right).

coordinates on triangles or tetrahedra. Recently, Xian et al. [2019]

propose a “mesh-free” alternative for tetrahedral meshes. They pro-

pose to use farthest point sampling to get “meshes” at coarser levels,

and define the prolongation using piecewise constant interpolation

which only requires the closest point query.

Algebraic Multigrid. A popular alternative to deal with unstruc-

tured meshes is to use algebraic multigrid [Brandt et al. 1985]

which builds the hierarchy by treating the linear system matrix

as a weighted graph and coarsening it. This approach makes no

assumptions on the structure of the geometry. Thus, it is directly

applicable to any unstructured domain. For this reason, algebraic

methods are deployed to mesh deformation [Shi et al. 2006], cloth

simulation [Tamstorf et al. 2015], and other graphics applications

[Krishnan et al. 2013]. However, the cost of algebraic multigrid’s

generality is the need to re-build the hierarchy whenever the sys-

tem matrix changes (see Fig. 2). Furthermore, defining the inter-grid

transfer operators for algebraic methods is more challenging and

leads to worse performance compared to our method (see Fig. 3).

Curved Surfaces. When it comes to surface meshes, defining the

prolongation operator becomes more challenging compared to the
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Euclidean case. This is because the vertices of a high-resolution sur-

face mesh do not lie on its coarsened counterpart, thus the straight-

forward barycentric computation is not immediately applicable. In

the special case of subdivision surfaces where the hierarchy is given,

there exists efficient geometric multigrid [Green et al. 2002] and

multilevel [de Goes et al. 2016] solvers that leverage the subdivi-

sion’s regular refinement process to define the prolongation. For

unstructured surface meshes, Ray and Lévy [2003] build the hier-

archy based on the progressive meshes [Hoppe 1996; Kobbelt et al.

1998] and define the prolongation operator using global texture

coordinates. Ni et al. [2004] (and similarly Shi et al. [2009]) find a

maximum independent set of vertices to build a hierarchy and com-

pute a prolongation operator based on a weighted average among

one-ring neighboring vertices. Aksoylu et al. [2005] propose several

methods for hierarchy construction based on removing the maxi-

mum independent set of vertices. Similarly, they also compute the

prolongation by averaging among the one-ring neighbors. These

approaches either need additional information (e.g., having subdivi-

sion connectivity or texture information) or use one-ring average

(combinatorial information) to define the prolongation. But one-

ring average often leads to a denser system because it requires on

average 6 vertices to interpolate the result on a vertex, in contrast

to 3 when using the barycentric interpolation. Performance wise, in

Fig. 4 we show that our prolongation leads to a better convergence

compared to the multigrid based on averaging one-ring vertices.

Our method computes the prolongation based on intrinsic geome-
try, in a similar spirit to [Sharp et al. 2019]. This enables us to define

a linear prolongation simply using the barycentric coordinates, echo-

ing the success of using barycentric coordinates in the Euclidean

case. Furthermore, our approach allows one to plug-and-play dif-

ferent decimation strategies to construct multigrid hierarchies (see

Fig. 13). This flexibility allows one to pick a well-suited decimation

method for their tasks of interest.

Purely algebraic direct solvers (e.g., sparse Cholesky) are the

de facto standard in geometry processing due to their reliability,

scalability (as memory allows), and precision. Factorizations can

be reused for changing right-hand sides (see Fig. 2), but trouble

arises for the myriad applications where the system matrix also

changes. Special classes of sparse changes can be efficiently exe-

cuted: low-rank updates [Chen et al. 2008; Cheshmi et al. 2020]

or partial re-factorizations [Herholz and Alexa 2018; Herholz and

Sorkine-Hornung 2020]. However, many other scenarios trigger full

numerical refactorization, such as changing parameters in a multi-

objective optimization and Hessian updates for Newton’s method

Due to the overwhelming popularity of Cholesky factorization, we

focus on it for many of our head-to-head comparisons.

3 MULTIGRID OVERVIEW

Multigrid is a type of iterative solver that is scalable to solve large

linear systems Ax = b. In this paper, we propose a novel geomet-

ric multigrid method for solving linear systems defined on curved

surfaces, represented as irregular triangle meshes. We refer readers

to excellent resources on multigrid [Brandt and Livne 2011; Trot-

tenberg et al. 2000], here we give only the essential components

… …

level 0

level 1

level H

level 0

level 1

restrict prolo

ng

…

Fig. 5. The multigrid V-cycle proceeds from the finest grid (level 0) to the

coarsest grid (level H) and goes back up to the finest grid again. On each

level (except for the coarsest level), we pre-relax the solution, restrict it to
the coarser grid, compute the correction, prolong the correction back to

the finer level, post-relax the correction, and then add the correction to the

current solution. Our approach belongs to the Galerkin multigrid where we

define the system matrix at a coarser level as Ah = P
⊤
hAh−1Ph . ©model by

Takeshi Murata under CC BY-SA.

needed to understand our method. Note that we use “grid” or “mesh”

interchangeably to denote the underlying geometry.

Multigrid methods solve a linear system in a hierarchical man-

ner by employing two complementary processes: relaxation and

coarse-grid correction. Relaxation involves applying classic iterative

methods to correct the high-frequency error between the current

solution and the exact solution of the system. Coarse-grid correc-

tion involves transferring the low-frequency error to a coarser mesh

through restriction, solving a coarse-grid system of equations, then

transferring the correction back to the finer mesh via prolongation
(a.k.a. interpolation). This process of going from the fine grid to the

coarse grid and then back to the fine grid is called the V-cycle (see
Fig. 5). How to build the multigrid hierarchy and how to transfer in-

formation back and forth between grid levels are keys to determine

the efficiency of a multigrid method.

Our method belongs to geometric multigrid based on the Galerkin
coarse grid approximation. Geometric multigrid is a class of multigrid

methods that builds the hierarchy purely based on the geometry,

requiring no knowledge about the linear system. Galerkin coarse

grid approximation builds the system matrix Ac on the coarsened

mesh from the system matrix A on the original mesh as

Ac = RAP, (1)

where R is the restriction operator to transfer signals from the fine

mesh to the coarsened mesh and P is the prolongation operator to

transfer signals from coarse to fine. When A is symmetric, many

methods often define R = P
⊤
. Thus, defining the prolongation

operator P is extremely critical for Galerkin multigrid because it

determines both the quality of the coarsened linear system P
⊤
AP and

the quality of the inter-grid transfer (restriction P
⊤
and prolongation

P). In Alg. 2, we provide pseudo code of the Galerkin multigrid V-

cycle where P plays a crucial role in the entire algorithm. An ideal

prolongation must accurately interpolate smooth functions (low

distortion) to ensure fast convergence. The prolongation also needs

to be sparse to enhance the solver efficiency at coarser levels.

Defining a prolongation that satisfies these properties is well-

studied on structured domains, but extending to unstructured curved

ACM Trans. Graph., Vol. 40, No. 4, Article 80. Publication date: August 2021.



80:4 • Hsueh-Ti Derek Liu, Jiayi Eris Zhang, Mirela Ben-Chen, and Alec Jacobson

Fig. 6. We visualize the bijective map computed using our method by coloring the high-resolution shape using the coarsened triangulation (as different colors).

Our method is applicable to man-made objects, organic shapes, high-genus shapes, and meshes with boundaries. ©models by Oliver Laric (left 1, 5, 8) under

CC BY-NC-SA and Landru (left 7) under CC BY.

Fig. 7. Given a high-resolution shape (left) and its coarsened counterpart

(right), we compute a bijective map between the two so that for any given

point on the fine mesh we can compute its corresponding barycentric co-

ordinates on the coarsened mesh, and vice versa. We visualize the map by

coloring the coarse triangulation on top of the high-resolution model.

surfaces remain a challenging problem until now. In this paper, we

use successive self-parameterization to compute a prolongation op-

erator P for curved surfaces based on the intrinsic geometry. Our

novel joint flattening further reduces the distortion caused by the

parameterization and our extension to meshes with boundaries

broadens the applicability of our method to many complex geome-

tries. When deploying our prolongation to the Galerkin multigrid

framework, our method achieves better convergence over alterna-

tive multigrid methods for curved surfaces.

4 INTRINSIC PROLONGATION

The central ingredient of Galerkin multigrid is the prolongation

operator to interpolate signals from a coarsened mesh to its fine

version. We compute the prolongation by maintaining an intrinsic

parametrization, as opposed to extrinsic prolongtaion based on 3D

spatial coordinates (cf. [Liu and Jacobson 2019; Manson and Schaefer

2011]). Specifically, we parameterize the high-resolution mesh using

the coarsened mesh to obtain a bijective map between the two (see

Fig. 7). Given a point on the high-resolution mesh, we can obtain its

corresponding barycentric coordinates on the low-resolution mesh,

and vice versa. We can then assemble a linear prolongation operator

based on the barycentric information.

We compute the bijectivemap using successive self-parameterization.
The key idea is to successively build a bijective map for each deci-

mation step and assemble the full map via compositing all the maps.

Our method for computing the successive parameterization is based

on the framework of [Liu et al. 2020], which can be perceived as a

combination of Lee et al. [1998] and Cohen et al. [2003]. The key

differences of our method compared to [Liu et al. 2020] are a novel

joint flattening method (see Sec. 4.2) to further reduce the distortion

and a generalization to meshes with boundaries (see Sec. 4.3). For

the sake of reproducibility, we reiterate the main ideas of successive

self-parameterization here.

4.1 Successive Self-Parameterization

LetM0
be the input fine mesh with/without boundary, andM0

is

successively simplified into a series of meshesMl
with 0 ≤ l ≤ L

until the coarsest meshML
. For each pair of meshesMl ,Ml+1

,

we use f ll+1 : Ml → Ml+1
to denote the bijective map between

them. The main idea is to compute each f ll+1 on-the-fly during the

decimation process and composite all the maps between subsequent

levels to obtain the final map f 0L :M0 →ML
as

f 0L = f LL+1 ◦ · · · ◦ f
0

1
. (2)

Thus, the question boils down to the computation of the individual

maps f ll+1 before and after a single edge collapse.

For each edge collapse, the triangulation mostly remains the same

except for the neighborhood of the collapsed edge. Thus, computing

f ll+1 only requires to figure out the mapping within the edge 1-ring

neighborhood. Let N l (k) be the neighboring vertices of a vertex k

(including vertex k itself) at level l and let N l (i, j) = N l (i) ∪ N l (j)
denote the neighboring vertices of an edge i, j . The key observation

is that the boundary vertices of N l (i, j) before the collapse are the

same as the boundary vertices of N l+1(k) after the collapse, where
k is the newly inserted vertex after collapsing edge i, j. Hence, we
compute a shared UV-parameterization for the patches enclosed

by N l (i, j) and N l+1(k) with the same boundary curve. Then, for

any given point pl ∈ Ml
(represented in barycentric coordinates),

we can utilize the shared UV parameterization to map pl to its

corresponding barycentric coordinates pl+1 ∈ Ml+1
and vice-versa,

as shown in Fig. 8.

4.2 Joint Flattening

The base method proposed by Liu et al. [2020] ensures boundary

consistency by first flattening the edge 1-ring N l (i, j) and setting

the boundary vertices as hard constraints when flattening the ver-

tex 1-ring N l+1(k) after the collapse. Although this method can

ACM Trans. Graph., Vol. 40, No. 4, Article 80. Publication date: August 2021.
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Fig. 8. Since both the edge 1-ring before the collapse (left) and the vertex

1-ring after the collapse (right) are mapped to the same 2D domain with a

consistent boundary curve (middle), we can easily use the shared UV space

to map a point back and forth betweenMl
andMl+1

.

sorted max. conformal error

ours

Liu et al. 2020

1.00

1.05

1.10

1.15

Fig. 9. For each edge 1-ring on this

bunny mesh, we collapse the edge

and flatten the patch using the

method of [Liu et al. 2020] and

our joint flattening method. We vi-

sualize the sorted quasiconformal

distortion among all the 1-rings

and demonstrate that our method

(blue) leads to less distortion.

ensure boundary consistency, it

always favors minimizing the dis-

tortion of N l (i, j) and creates

larger distortion when flattening

N l+1(k).
We instead compute the shared

UV-parameterization by jointly
minimizing a distortion energy E

defined on the edge 1-ringN l (i, j)
before the collapse and the vertex

1-ring N l+1(k) after the collapse
while ensuring boundary consis-

tency. In Fig. 9, we demonstrate

that our joint flattening results in

a parameterization with less dis-

tortion compared to the method by Liu et al. [2020].

For the notational convenience, we use V l , F l to denote the ver-

tices and faces of the local patch within N l (i, j) before the collapse,

and V l+1, F l+1 to denote the vertices and faces of the local patch

within N l+1(k) after the collapse. We then write the joint energy

optimization problem as

minimize

U
l ,Ul+1

E(V l , F l ,Ul ) + E(V l+1, F l+1,Ul+1) (3)

subject to u
l
b = u

l+1
b (4)

where we use U
l ∈ R |V

l |×2
to represent the UV locations of V l

at

level l and each u
l
i ∈ R

2
denotes a UV-vertex position. We also use

u
l
b , u

l+1
b to represent the boundary vertices of N l (i, j) andN l+1(k),

respectively.

In order to handle the constraints, we introduce a joint variable

U = U
l ∪ U

l+1
(see Fig. 10) to incorporate the equalities into the

degrees of freedom and turn Eq. (3) into an unconstrained problem

min

U

E(V l , F l ,U) + E(V l+1, F l+1,U) (5)

Introducing the joint variable U allows us to minimize the distortion

energy for the patch before and after the collapse simultaneously.

4.3 Boundary Edges

The creation of the joint variable in Fig. 10 is only applicable when

the collapsed edge lies fully in the interior of the triangle mesh.

For boundary edges, different treatment is required to ensure the

ki

jb

Fig. 10. Ensuring bijectivity between V l
and V l+1

requires their boundary

vertices (black b) to have the same UV positions (right). We handle this

constraint by introducing a joint variable U which contains shared degrees

of freedom on the boundary.

k

i

j

b

Fig. 11. When one of the edge vertices is on the boundary (vertex j in this

case), we have to also constrain the vertex j and k to have the same UV

location to ensure bijectivity, as shown in the joint variable U on the right.

s.t. (i=k, j, q) colinear s.t. (p, i, j=k) colinear s.t. (p, i, k, j, q) colinear

ki j

q

b

p p q

Fig. 12. When the edge i, j is a boundary edge, we consider three cases:

u
l
i = u

l+1
k (left), u

l
j = u

l+1
k (middle), and vertex i, j, k are colinear in the UV

space (right). To ensure the boundary curves remain consistent, these cases

result in three different sets of colinearity constraints (see the bottom row),

where we use q to represent the next boundary vertex of the edge i, j and
we use p to represent the previous boundary vertex of the edge i, j .

shared parameterization has a consistent boundary curve in order

to preserve the bijectivity (cf. [Liu et al. 2017]).

In the case where one of the two incident vertices lies on the

boundary, we create a joint variable which snaps the UV position

of the other (interior) vertex to the boundary (see Fig. 11). Note that

we only perform this snapping operation in the parameterization

domain, their corresponding vertices vj , vk in R3 are still placed
at the locations which minimize the decimation error metric (e.g.,

appearance preservation).

In the case where both edge vertices are on the boundary, we

determine the joint variable U by choosing best of three possible

choices. Suppose the boundary edge i, j is collapsed to a boundary

vertex k , we consider the cases where (1) vertex k lies on vertex i ,
(2) vertex k lies on vertex j, and (3) vertex k lies on the line defined

by i, j. Even though case (1), (2) seem unnecessary when we have

ACM Trans. Graph., Vol. 40, No. 4, Article 80. Publication date: August 2021.
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qslim
& lscm

qslim
& arap

vertex
& lscm

vertex
& arap

uniform
& lscm

uniform
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input

Fig. 13. Our method allows to plug-and-play different decimation strategies

and parameterization algorithms. In these examples, we decimate the model

using qslim [Garland and Heckbert 1997], vertex removal via half-edge

collapse, and uniform mid-point edge collapse. We use arap [Liu et al. 2008]

and lscm [Lévy et al. 2002] as the parameterization algorithms. The influence

of these combinations to the solver convergence is shown in Fig. 14.

case (3), these cases end up with different sets of constraints in the

joint flattening optimization. Thus, we consider all three cases and

take the one with the minimum energy value. In Fig. 12, we show

how we group variables for the three cases and their corresponding

colinearity constraints to maintain the same boundary curve. We

impose the colinearity via adding Dirichlet constraints (ui )y = 0

for all the vertices i that are colinear.

4.4 Decimation Strategies & Distortion Energies

Our joint flattening makes no assumption on the edge collapse al-

gorithm in use. For instance, one could use the quadric error edge
collapse (qslim) [Garland and Heckbert 1997] to preserve the appear-

ance, mid-point edge collapse to encourage the coarse triangulation

to be more uniformly distributed, and the vertex removal (via half-
edge collapses [Kobbelt et al. 1998]) to ensure that the vertices on

the coarsened mesh are a subset of the fine vertices.

The distortion energy E in Eq. (5) provides another design param-

eter. In Fig. 13, we demonstrate the flexibility of our joint flattening

by minimizing the as-rigid-as-possible (arap) [Liu et al. 2008] and

the least square conformal map (lscm) [Lévy et al. 2002] energies.

Depending on the intended application, different combinations

of the decimation strategy and the parameterization algorithm may

lead to different performance. For instance, in Fig. 14 we compare the

convergence behavior of our Galerkin multigrid solvers constructed

using these combinations. In our experiments, using the uniform

decimation with lscmleads to the best performance among these

options. Other options for minimizing the distortion [Khodakovsky

et al. 2003], computing the map [Friedel et al. 2004; Guskov et al.

2002, 2000], and decimation strategies (e.g., [Trettner and Kobbelt

2020]) seem attractive to combine with our joint flattening. It is

however more challenging and thus left as a future work.

5 10 5 10 15
number of iterations

RMS error RMS error

uniform, lscm
qslim, arap
qslim, lscm

vert. removal, arap
vert. removal, lscm

uniform, arap

10-2

100

10-4

10-6

10-2

100

10-4

10-6

Fig. 14. Different combinations of the decimation and the parameterization

methods lead to different performance in down-stream applications. For

example, in the context of multigrid solvers on a Poisson problem, the

uniform edge decimation with lscm leads to a better convergence rate.

4 8 12 164 8 12 16

10-4

100

10-8

10-12

number of iterations

RMS error RMS error

closest point

closest barycentric

ours

closest point

closest barycentricclosest barycentric
ours

10-4

100

10-8

10-12

Fig. 15. We compare our intrinsic prolongation with naive extrinsic prolon-

gations based on the closest-point projection. When evaluating on a simple

shape (left), most methods can converge; when evaluating on a complex

shape (right), only our intrinsic prolongation converges. ©model by Oliver

Laric (right) under CC BY-NC-SA.

4.5 Prolongation Operator

The above discussion computes a bijective map between a pair of

meshes that undergoes a single edge collapse. We can easily extend

the method to compute a map between two consecutive multigrid

levels via composition (see Eq. (2)). Given this information, we can

now compute a prolongation operator for surface multigrid.

We choose linear interpolation as our prolongation operator be-

cause it is sufficient for the convergence of the second-order PDEs

typically employed in computer graphics [Hemker 1990]. Although

some of our experiments consider higher order PDEs, many of

them are reduced to low-order systems in practice via mixed finite

elements [Jacobson et al. 2010]. Empirically, we find that linear

prolongation still converges in most cases.

Our linear prolongation P is a tall matrix whose size is the num-

ber of fine vertices by the number of coarse vertices. Each row of P

contains 3 non-zeros corresponding to the barycentric coordinates

of the fine vertex with respect to the vertices of the coarse triangle

containing it. We evaluate the quality of our prolongation on solving

Poisson problems on a variety meshes. We demonstrate that our

intrinsic prolongation leads to faster convergence compared to the

naive closest point projection (Fig. 15), an extrinsic bijective projec-

tion by Jiang et al. [2020] (Fig. 16), vertex 1-ring average [Aksoylu

et al. 2005] (Fig. 4), and algebraic multigrid prolongations (Fig. 3).
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RMS error

Jiang et al. 2020Jiang et al. 2020

ours

Jiang et al. 2020Jiang et al. 2020

10-4

100

10-8

10-12

Fig. 16. Compared to an extrinsic prolongation proposed by Jiang et al.

[2020], our prolongation leads to faster convergence.

RMS error

4 8 12 16

10-4

10-8

4 levels

100

4 levels 
(default)

6 levels 

#V: 983

#V: 61

number of iterations

6 leverls

Fig. 17. We compare the multigrid convergence between our default pa-

rameters (resulting in four multigrid levels) and an extreme coarsening (6

levels). We demonstrate that the extreme coarsening hurts the performance

(right) because the coarsest mesh fails to represent the target solution.

5 MULTIGRID IMPLEMENTATION

Switching from direct solvers to our multigrid method is very simple.

In Alg. 1 we summarize how one can implement a Galerkin geomet-

ric multigrid method to solve a linear system. The key difference

is that the pre-computation happens right after loading the input

mesh. This pre-computation takes the vertex and face lists as the

inputs, and outputs a series of prolongation operators P1, · · · ,PH
for different levels on the hierarchy. After building the linear system

A, b, one can run the V-cycle until getting the desired accuracy.

In Alg. 2, we summarize the pseudo code of the V-cycle algo-

rithm which consists of two procedures: relaxation and coarse-grid

correction. For the relaxation step, we use the standard serial Gauss-

Seidel method. In the coarse-grid correction step, the process is

well-defined given the prolongation operator P. We start by restrict-

ing the residual to the coarser level via P
⊤
, solving a coarsened linear

system with the left-hand-side defined as P
⊤
AP, prolonging the low-

res solution back to the fine domain using P, and using it to update

the current high-res solution. We can further accelerate the compu-

tation by storing the system matrix hierarchy Ah+1 = P
⊤
h+1AhPh+1

to save some redundant computation.

In terms of hyperparameters of our multigrid method, we conduct

an ablation study summarized in App. D. In each V-cycle, we use the

Gauss-Seidel relaxation with 2 pre- and post-relaxation iterations.

Our default setup coarsens the geometry down to 0.25 of the number

of vertices at its previous level until we reach the coarsest mesh

with no lesser than 500 vertices. Note that we do not recommend

to coarsen the mesh to an extreme. In Fig. 17, we show that an ex-

tremely aggressive coarsening often hurts the performance because

Algorithm 1: Galerkin Surface Multigrid Solver

1. V, F← load triangle mesh
2. P1, · · · ,PH ← precompute multigrid hierarchy (V, F)
3. A← build left-hand-side
4. b← build right-hand-side
5. initialize a solution x

6. while error is larger than ϵ do
7. x← V-cycle (A, x, b, 0) // see Alg. 2

Algorithm 2: xnew = V-cycle (A, xold , b,h)
Param. : P1,P2, · · · ,PH , // hierarchy of prolongations

µpre, µpost // pre- and post-relaxation iterations

Input : A, // left-hand-side system matrix

xold, // current solution

b, // right-hand-side of the linear system

h, // current multigrid level

Output : xnew // new solution

1. if h is not the coarsest level H then
2. // pre-relaxation

3. x
′
old ← Relaxation (A, xold , b, µpre)

4. // coarse-grid correction

5. rh+1 ← P
⊤
h+1(b − Ax

′
old) // restrict residual

6. ch+1 ← V-cycle (P⊤h+1APh+1, 0, rh+1,h + 1)
7. ch ← Ph+1ch+1 // prolong correction

8. x
′
new ← xold + ch // update solution

9. // post-relaxation

10. xnew ← Relaxation (A, x′new , b, µpost);

11. else
12. solve Axnew = b // direct solve

13. return xnew

the coarsest mesh fails to represent the target solution. In terms

of stopping criteria, the accuracy ε that allows us to get visually

distinguishable results compared to the ground truth depends on

the problem and the size of the mesh. In our experiments, we set it

to be 10
−3 ≥ ε ≥ 10

−5
. Our experiments suggest that the optimal

set of parameters that minimizes the wall-clock runtime depends

on the geometry and the PDE of interest. But we use our default

parameters for all our experiments in Sec. 6 for consistency.

We implement our algorithm in C++ with Eigen and evaluate

our method on a MacBook Pro with an Intel i5 2.3GHz processor.

In comparison with the Cholesky solver where pre-factorization is

required whenever the system matrix A is changed, our multigrid

solver leads to orders of magnitude speed-ups (see Fig. 21).

Boundary conditions. Our implementation currently supports nat-

ural boundary conditions (Fig. 21 right), zero Neumann boundary

conditions (Fig. 21 left), and the Dirichlet boundary condition. We

handle the Dirichlet constrains by reformulating the system using
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Fig. 18. On the left, we report the runtime of our successive self-

parameterization for constructing the bijective map. On the right, we report

the query time of a single point through the bijective map.

input shape
#V: 433K

α=1e-5
Cholesky: 6.49 sec.

ours: 0.29 sec. (22.3x)
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Cholesky: 5.91 sec.

ours: 0.29 sec. (20.4 x)

α=1e-3
Cholesky: 6.01 sec.

ours: 0.23 sec. (26.1x)

Fig. 19. In the data smoothing application, one would adjust the smoothness

parameter α until getting the desired smoothness. Using direct solvers (e.g.,

Cholesky) would need to recompute the expensive pre-factorization, but

our multigrid solver can reuse the same hierarchy and leads to interactive

performance.

only the unknown variables. This results in a reduced and uncon-

strained linear system, allowing us to solve it as usual. For more

details, please refer to App. B.

Successive Self-Parameterization. We report the runtime of our

pre-computation (self-parameterization and the query) in Fig. 18 and

detail the implementation in App. C. Note that this pre-computation

solely depends on the geometry. We only need to do this computa-

tion once for each shape and we can reuse the same hierarchy for

many different linear systems. Thus, in our runtime comparisons in

Sec. 6, we do not include the runtime of this pre-computation.

6 APPLICATIONS

We evaluate our method on a variety of geometry processing ap-

plications that involve solving linear systems as a subroutine. We

especially focus on the case where the system matrix A is changing

due to different time steps (e.g., simulation) or user interactions (e.g.,

data smoothing). In our experiments, we ignore the multigrid pre-

computation and compare our multigrid V-cycle (in blue) against

the runtime of both the factorization and the solving time combined

of the Cholesky solver (in red) because these steps are required

when both A, b are changing. We also pick the applications that in-

volve different systemmatrices with different sparsity patterns. This

includes the cotangent Laplacian (1-ring sparsity), the Bilaplacian

(2-ring sparsity), the squared Hessian (2-ring sparsity) [Stein et al.

2020], a system matrix derived from Lagrange multipliers [Azencot

et al. 2015], and also the Hessian matrices from shell simulation

which has 3|V |-by-3|V | dimensionality.

 s
m
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th
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g

70.5 sec. 1.0 sec.
(70.5x)

85.3 sec. 2.7 sec.
(31.6x)

input shape noisy data Cholesky ours
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#V: 435K

 s
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oo
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in
g

Fig. 20. We evaluate our method on data smoothing with different smooth-

ness energies, including the Bilaplacian E∆2 and the squared Hessian EH 2 .

Our method is orders of magnitude faster than the direct solver.
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Cholesky

ours

104 105 106

number of vertices

sec.

Cholesky
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 smoothing  smoothing
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102

10-2

100
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Fig. 21. We compare the runtime of our multigrid solver against the

Cholesky solver on smoothing the noisy data on a sphere cap at different

resolutions until reaching a sufficiently small mean squared error (visually

indistinguishable). We evaluate the smoothing with the Dirichlet energy

E∆ (1-ring sparsity) and with the squared Hessian energy EH 2 [Stein et al.

2020] (2-ring sparsity). Our method is asymptotically faster than the direct

solver. On meshes with 200K vertices and 3 million vertices (using EH 2 ), a

serial implementation of our method is 39× and 231× faster, respectively.

Data smoothing. Smoothing data on the surface is a fundamental

task in geometry processing. We often treat it as an energy mini-

mization problem

x = argmin

x
αEs (x) + (1 − α)

∫
Ω
∥x − f ∥2dx , (6)

where α is the parameter controlling the smoothness, f is the in-

put noisy function, and Es is an energy of choice, measuring the

smoothness of the output signal x . As a different input f may con-

tain a different amount of noise, one would typically adjust the α
or the smoothness energy Es until getting the desired smoothness.

However, these adjustments boil down to solving a different linear

system. When using direct solvers, this requires to recompute the

factorization in order to solve the system. In comparison, using our

multigrid allows one to reuse the same precomputed multigrid hier-

archy and leads to orders of magnitude speed-ups (see Fig. 19). We

evaluate our method on different smoothness energies, including

the Dirichlet energy E∆ (Fig. 19), the squared Laplacian energy E∆2

(Fig. 20 top), and the squared Hessian energy EH 2 [Stein et al. 2020]
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Cholesky solver
time per iter. 0.27+0.32 sec.

ours
time per iter. 0.27+0.10 sec.

input 
#V: 34K

Fig. 22. We compare our multigrid against the direct solver on the polycube

deformation proposed by [Zhao et al. 2017]. Although the vertex positions

are changed at every iteration, we can still reuse the precomputed multigrid

hierarchy because the connectivity remains the same.We report the runtime

of other steps in the algorithm in black and the runtime for solving linear

systems in red and in blue.

mean curvature flow

time per iteration
Cholesky: 2.8+32.3 sec.

ours: 2.8+1.4 sec.

#V: 691K

Fig. 23. Running the mean curvature flow [Kazhdan et al. 2012] requires

to update the system matrix at every step according to the mass matrix of

the current mesh. By reusing the hierarchy computed on the input shape

(left), our multigrid method is orders of magnitude faster than the direct

solver. We report the runtime of other subroutines in black and the time for

solving the linear system in red (direct solver) and in blue (our multigrid).

©model by Oliver Laric under CC BY-NC-SA.

(Fig. 20 bottom). In Fig. 21, we quantitatively evaluate the runtime

on the same shape at different resolutions obtained via subdivision.

On a mesh with millions of vertices, our approach has over 100×

speed-ups. With our multigrid setup, the precomputed prolongation

operator can be reused not only when changing the value of α (full

rank update to A), but also when swapping between energies Es .

Mesh deformation. We also evaluate our method on mesh defor-

mations to demonstrate that even though the vertex positions have

changed, as long as the connectivity of the mesh remains the same,

we can still reuse the same multigrid hierarchy computed on the

rest mesh. One possible intuition is to view the deformation field

on vertices as a function on the rest shape. Thus, a hierarchy built

on the rest shape could still be used to compute the deformation

“function”. In Fig. 22, we evaluate our method on a polycube de-

formation method proposed by [Zhao et al. 2017] whose system

matrix is re-built at every iteration based on the current deformed

mesh. Our method accelerates the algorithm by 3.2 × on a relatively

low-resolution mesh. In Fig. 23, we replace the Cholesky solver with

our method on a mean curvature flowmethod proposed in [Kazhdan

et al. 2012] and achieve 23× speedup.

input 
#V: 151K

time per iter. (ɛ=1e-4)
Cholesky: 1.6+10.5 sec.

ours: 1.6+2.6 sec.

time per iter. (ɛ=1e-6)
Cholesky: 1.7+10.9 sec.

ours: 1.7+2.5 sec.
high

density

low
density

Fig. 24. The surface fluid simulation [Azencot et al. 2015] involves solving

different linear systems at each time step. Our method reuses the precom-

puted hierarchy and leads to a faster solver in contrast to the direct solver.

We split the runtime of other procedures (black) and the runtime of solving

the linear system (red and blue). Note that this runtime comparison is in

MATLAB using the original implementation from [Azencot et al. 2015].

balloon inflation (#V: 139K)

Cholesky: 27.2+561.5 sec.  ours: 27.2+20.0 sec.

Fig. 25. Replacing the Cholesky solver with our surface multigrid method,

we can accelerate the linear solve part in the balloon simulation proposed

by [Skouras et al. 2012] by 28× so that solving linear systems becomes no

longer the bottleneck of the algorithm.

In many simulation algorithms, the system matrix A changes at

every time step. In Fig. 24, we demonstrate the speed-up of our

multigrid solver on a surface fluid simulation [Azencot et al. 2015].

Note that the surface fluid simulation is evaluated inMatlab (for

both the direct solver and our multigrid) respecting the original

implementation. In Fig. 25, we evaluate our method on a balloon

simulation method proposed by [Skouras et al. 2012]. Due to the

speedup of our multigrid method, we shift the bottleneck of balloon

simulation away from solving linear systems.

7 DISCUSSION

Table 1. Multigrid runtime.

profile (sec.) Fig. 23

precompute 50.6

total solve time 1.44

1. prepare P
⊤
AP 0.72

2. relaxation 0.38

3. prolong & restrict 0.10

4. get residual norm 0.10

5. others 0.14

In our experiments in Sec. 6,

we evaluate our runtime us-

ing a simple serial implemen-

tation of our method. In Ta-

ble 1, we further provide a de-

tailed runtime decomposition

of the experiment in Fig. 23 as

a representative example. We

can observe that preparing

the matrix hierarchy P
⊤
AP

and doing the relaxation take

most of the time when solv-

ing a linear system. Thus, we can achieve even more speedup if we

leverage the structure of the problem when computing the matrix

hierarchy, such as the data smoothing detailed in App. E, or a paral-

lel implementation of the entire V-cycle. To validate our hypothesis,
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our initial attempt uses CPU to parallelize the Gauss-Seidel method

based on graph coloring. This reduces the runtime of our relaxation

from 0.38 seconds down to 0.17 seconds (2.2× speedup) for the ex-

periment in Fig. 23. Similarly, for the top and the bottom examples

in Fig. 20, the fast Gauss-Seidel accelerates the relaxation by 1.8×

and 3.3× repetitively. We provide details about our graph coloring

Gauss-Seidel in the App. A for completeness. An even higher speed-

up can be expected via a GPU implementation of the Gauss-Seidel

relaxation (cf. [Fratarcangeli et al. 2016]). Besides the Gauss-Seidel

relaxation, parallelizing the entire solver could also be an interesting

future direction to accelerate our method.

8 LIMITATIONS & FUTURE WORK

We present a geometric multigrid solver for triangulated curved

surfaces. Multigrid methods are asymptotically faster than direct

solvers, thus it offers a promising direction for scalable geometry

processing. Our multigrid method can obtain a fast approximation of

the solution with orders of magnitude speedup. However, obtaining

a highly accurate solution would require more iterations which

results in a less significant speed-ups. For higher-order problems,

our method may not converge to high accuracy because our choice

of linear interpolation is insufficient [Hemker 1990]. Thus, exploring

high-order prolongation (e.g., subdivision barycentric coordinates

[Anisimov et al. 2016]) or learning-based prolongation (e.g, [Katrutsa

et al. 2020]) would also be valuable directions to improve the solver.

Another interesting direction to improve the solver is to use our

multigrid solver as the pre-conditioner for other solvers such as the

conjugate gradient method.

Developing a reliable and robust surface multigrid solver would

be an important next step. Our current solver is more sensitive to the

triangle quality of the input mesh compared to the existing direct

solver. In our experiments, we remesh troublesome input shapes

using available methods [Hu et al. 2020; Jakob et al. 2015; Schmidt

and Singh 2010]. A better future approach would be extending our

self-parameterization to the entire remeshing process, to maintain

bijectivity from the remeshed object to the input mesh. Having a

deeper understanding of the relationship between the convergence

and mesh quality would give insights towards developing a suitable

remeshing algorithm for surface multigrid solvers. Achieving this

may also require theoretical tools to estimate the convergence prop-

erty, such as extending the Local Fourier Analysis from subdivision

meshes [Gaspar et al. 2009] to generic unstructured meshes. Once

surface multigrid has become a reliable solver for linear systems on

manifold meshes, generalizing it to non-manifolds or point clouds

would be another exciting future direction.

Another avenue for future work is to further optimize each com-

ponent of the prolongation construction and multigrid solver rou-

tines. Although our method outputs a bijective map in most cases,

bijectivity is not guaranteed. A more rigorous analysis is required to

identify potential edge cases that may result in non-bijective maps.

Currently, we use off-the-shelf simplification and distortion objec-

tives (as-rigid-as-possible [Liu et al. 2008] and conformal [Lévy et al.

2002] energies), but these methods that are designed for other pur-

posesmay not be the optimal ones for surfacemultigridmethods. For

instance, we notice that the distortion in the self-parameterization is

not closely correlated to the convergence of our multigrid solver (see

Fig. 14). We however use the off-the-shelf parameterization energy

designed to measure the distortion in our multigrid solver. Devel-

oping simplification and parameterization methods tailored-made

for multigrid solver performance could further improve eventual

solver speed.

The relationship between multigrid convergence and bijectivity

requires a deeper understanding. Although we empirically demon-

strate the superior performance of our prolongation compared to

other non-bijective prolongations, bijectivity is not required for a

multigrid method to converge. In our construction, we even pay the

price of high distortion to achieve bijectivity along the boundary

(zoom in Fig. 6). Thus, a deeper understanding of the connections be-

tween distortion, bijectivity, and multigrid convergence is important

to reach optimal performance.
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graph coloring reordering

Fig. 26. Given a system matrix with the sparsity pattern showing on the

left, we first use a greedy graph coloring approach detailed in Alg. 3 to

“paint” the variables that are independent of each other with the same color

(middle). Then we perform reordering to group the variables with the same

color together (right) to parallelize our Gauss-Seidel relaxation.

Algorithm 3: Graph Coloring

1. sort nodes {ni } by degree

2. pallette← {}
3. for each node ni do
4. N ← gather colors from painted neighbors of ni
5. c ← find first entry in pallette not occurring in N

6. if c is not found then
7. c ← new color

8. append c to pallette

9. else
10. move c to back of pallette

11. paint ni with color c

A MULTI-COLOR GAUSS SEIDEL

Our multigrid method spends a lot of the runtime on the Gauss-

Seidel relaxation. We further accelerate the Gauss-Seidel relaxation

by exploiting graph coloring (see Fig. 26), a standard optimization.

Specifically, we treat the non-zero off-diagonal entries of a given

sparse matrix A as a graph. We color this graph so that each node

has a different color from its neighbors using a simple modification

of the method proposed by Welsh and Powell [1967], summarized

in Alg. 3 and repeated here for completeness. We color each node

in descending order of degree. When considering node i , we try
each color from a list of k colors that have been previously used for

nodes (1, · · · , i − 1). A color choice is valid if not matching any of

the previously colored neighbors of node i . If valid, node i is colored
and that color is moved to the back of the list. If no valid color is

found in the list, a new color is used and added to the back of the

list. This algorithm hasO(|V |loд |V |+ |E |k) runtime andO(|V |+ |E |)
memory complexity, respectively, where k is the number of output

colors (for sparse matrices, k ≪ |V |). Although suboptimal (finding

the optimal coloring is NP-complete), it handily outperforms the

method of [Fratarcangeli et al. 2016] in runtime, memory usage, and

color parsimony. By moving selected colors dynamically to the back

of the list, we achieve better color balance (see, e.g., Fig. 26) than

considering the list in fixed order of insertion.

B DIRICHLET BOUNDARY CONDITIONS

Solving a linear system Ax = b is equivalent to minimizing a qua-

dratic energy

E(x) =
1

2

x
⊤
Ax − x⊤b (7)

where one can derive the same linear system by setting ∂E/∂x = 0.

One way to handle Dirichlet boundary conditions x(known) = c

is to reformulate the quadratic energy using only the unknown

variables. Here we use known and unknown to represent indices of

knowns and unknowns. We further use xk = x(known) to denote

known variables and xu = x(unknown) for unknown variables in

x. For matrices, we follow the same notation. For example, we use

Auk = A(unknown, known) to represent the corresponding sub-

block in matrix A. We then rewrite the energy as (assuming A is

symmetric)

E(xu ) =
1

2

x
⊤
u Auuxu + x

⊤
u Auk xk − x

⊤
u bu + constant. (8)

By setting the derivative to zero, we can derive a reduced linear

system for only unknowns

Auu︸︷︷︸
LHS

xu = −Auk xk + bu︸           ︷︷           ︸
RHS

(9)

We can leverage the same trick to incorporate Dirichlet con-

straints in the multigrid system. We use xc to denote the coarse

variable such that x = Pxc where the P is the Galerkin prolongation

operator. We can then write the unknowns as

xu = Pu :xc (10)

where Pu : = P(unknown, :) (MATLAB notation) represents the rows

of P that correspond to the unknown indices. Adding this to Eq. (11)
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leads to

E(xc ) =
1

2

(Pu :xc )
⊤
Auu (Pu :xc ) + (Pu :xc )

⊤
Auk xk (11)

− (Pu :xc )
⊤
bu + constant. (12)

=
1

2

x
⊤
c P
⊤
u :AuuPu :xc + x

⊤
c P
⊤
u :Auk xk (13)

− x⊤c P
⊤
u :bu + constant. (14)

Similarly, setting the derivative with respect to xc results in

P
⊤
u :AuuPu :︸       ︷︷       ︸

reduced LHS

xc = P
⊤
u :(−Auk xk + bu )︸                 ︷︷                 ︸

reduced RHS

(15)

We can notice that, except at the second finest level where we

need to extract the rows in prolongation that correspond to the

unknowns Pu :, we can solve the linear system at coarser levels

without worrying about the constraints.

Another special case may occur when there are too many known
indices. If too many variables in x are given the reduced system

P
⊤
u :AuuPu : may have completely zero rows/columns. To handle this

edge case, we further remove the columns on Pu : where the maxi-

mum value is zero and the corresponding rows in the prolongation

at the next level.

C SUCCESSIVE SELF-PARAMETERIZATION

Our pre-computation of multigrid hierarchy involves decimating the

triangle mesh with successive self-parameterization and mapping

vertices on the fine mesh to the coarse mesh to obtain their barycen-

tric coordinates. We report the runtime of both pre-computation

steps in Fig. 18.

Implementing successive self-parameterization only requires a

small change to an existing edge collapse algorithm. Specifically,

right after collapsing a single edge, the only modification is to use

the method described in Sec. 4.2 and Sec. 4.3 to formulate the joint

variable and then flatten both patches to a consistent UV domain. To

determine whether the collapse and the flattening is valid, we refer

to the Appendix B in [Liu et al. 2020] for more details. During the

querying stage, for a given query point represented as barycentric

coordinates, we simply go through the list of local joint UV param-

eterization we stored from the decimation stage and update the

barycentric coordinates successively using the method described in

Fig. 8. We pre-store the face indices involved in each edge collapse

so that for each query point, we can easily check whether this point

is involved in the collapse via checking the face indices.

D ABLATION STUDY

In addition to the prolongation operator, the hyperparameters of a

multigrid method also play a role in the convergence behavior. In

terms of stopping criteria, the accuracy ε depends on the problem

and the size of the mesh. We usually set 10
−5 ≤ ε ≤ 10

−
in order

to get visually indistinguishable results compared to the ground

truth. Using a reasonable initialization, such as the vertex positions

in the previous iteration in mesh deformation, would further re-

duce the number of iterations to get the desired accuracy. For other

hyperparameters, we conduct ablation studies on the choice of re-

laxation methods, pre-/post-relaxation iterations µpre, µpost, and the

relaxations relax iterations coarsening ratio

10-4

100

10-8

SOR

GS

JacobiJacobi

1 iter.

8 iter.

0.125

0.250.250.5

RMS 

number of iterations
4 8 12 16 4 8 12 16 4 8 12 16

2 iter.2 iter.

4 iter.4 iter.

Fig. 27. We conduct an ablation study on the multigrid hyperparameters,

including the relaxation method (left), the number of relaxation iterations

(middle), and the coarsening ratio (right). ©model by Oliver Laric under CC

BY-NC-SA.

coarsening ratio between consecutive levels (see Fig. 27). In terms

of the relaxation methods, Gauss-Seidel is usually the go-to choice

due to its effectiveness in smoothing out the high-frequency error.

Practitioners may also prefer the (damped) Jacobi because it is faster

and easier to parallelize, even though each iteration is less effective.

In terms of the number of relaxation iterations, usually a couple of

iterations (2 or 3) are sufficient to handle the high-frequency error.

While we also notice that some multigrid methods (e.g., [Xian et al.

2019]) use lower-order prolongation with many more relaxation

iterations to compensate for the inter-grid transfer error. In terms of

coarsening ratio, using a less aggressive coarsening (e.g., 0.5) could

reduce the error caused by the inter-grid transfer, but it often results

in a bigger multigrid hierarchy and a longer runtime per cycle. On

the other hand, using a more aggressive coarsening often leads to

large inter-grid transfer error and slow convergence. Our default

setup coarsens the geometry down to 0.25 of its previous resolution

until we reach the coarsest mesh with no lesser than 500 vertices.

In each V-cycle, we use the Gauss-Seidel relaxation with 2 pre- and

post-relaxation iterations. Our experiments suggest that the optimal

set of parameters that minimizes the wall-clock runtime depends

on the geometry and the PDE of interest. But we use our default

parameters for all our experiments in Sec. 6 for consistency.

E FAST DATA SMOOTHING

When we discretize the data smoothing energy Eq. (6), we often

arrive the following linear system

(αQ + (1 − α)M)︸               ︷︷               ︸
A

x = (1 − α)Mf (16)

where Q is a matrix that depends on the choice of the smoothness

energy, M is the mass matrix, f is the noisy function, and α is

the smoothness parameter. In order to build the coarsened system

matrix, a straightforward implementation would be doing P
⊤
AP

directly, but we can actually split the computation via

P
⊤
AP = α(P⊤QP) + (1 − α)(P⊤MP). (17)

Then we can pre-compute P
⊤
QP and P

⊤
MP even before knowing

the parameter α . As a results, during the online stage when a user

adjusts α , we only require an efficient matrix addition to compute

the system matrices for all the multigrid levels.
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